亚行赠款项目

山西省通过地下水管理适应气候变化赠款项目

终期报告

<table>
<thead>
<tr>
<th>项目编号：</th>
<th>0188－PRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>项目名称：</td>
<td>山西省通过地下水管理适应气候变化赠款项目</td>
</tr>
<tr>
<td>报告编著：</td>
<td>技术支持专家组 山西省河川农业综合开发亚行贷款项目管理办公室</td>
</tr>
<tr>
<td>项目起止日期：</td>
<td>2010年12月－2013年8月</td>
</tr>
</tbody>
</table>
亚行赠款项目

山西省通过地下水管理适应气候变化赠款项目

项目编号：0188 – PRC

项目名称：山西省通过地下水管理适应气候变化赠款项目

项目赞助：亚洲开发银行

中华人民共和国财政部

项目领导组：
- 山西省人民政府
- 山西省财政厅
- 山西省扶贫开发办公室
- 山西省水利厅

项目执行机构：
- 山西省河川农业综合开发亚行贷款项目
- 管理办公室

项目管理：
- 苏贵定
- 李红岩

专家组：

<table>
<thead>
<tr>
<th>组长</th>
<th>樊贵盛</th>
<th>灌溉专家</th>
<th>太原理工大学</th>
</tr>
</thead>
<tbody>
<tr>
<td>副组长</td>
<td>Frank van Steenbergen</td>
<td>地下水管理专家</td>
<td>MetaMeta 研究（www.metameta.nl）</td>
</tr>
<tr>
<td>专家</td>
<td>张文忠</td>
<td>地下水专家</td>
<td>山西省水资源研究所</td>
</tr>
</tbody>
</table>

项目案例研究组：

组长：樊贵盛

副组长：Frank van Steenbergen

专家：张文忠
项目主要调查员：樊贵盛 Frank van Steenbergen

张文忠 苏贵定
李红岩 韦盛荣
王永胜 贺尔荣
王前栋 李小平
李林川

报告起草人：樊贵盛 Frank van Steenbergen 张文忠

报告审核：苏贵定 李红岩

报告翻译审查：樊彩英
目录

前言 ... 5

1. 山西省概况 .. 7
 1.1 自然及社会概况 ... 7
 1.2 山西省气候变化 ... 10
 1.3 山西省地下水资源 ... 17
 1.3.1 地质 ... 17
 1.3.2 区域水文地质条件 ... 18
 1.3.3 地下水资源及可开采量 .. 19
 1.3.4 地下水开发利用历史 .. 19
 1.4 地下水面临的挑战 ... 22
 1.4.1 地下水过量开采，形成了大范围的地下水降落漏斗 23
 1.4.2 气候变化对地下水资源影响 ... 25
 1.4.3 地面沉降 .. 26
 1.4.4 岩溶大泉流量不断减少甚至断流 ... 27
 1.4.5 地下水污染 ... 29

2. 高效地下水管理经验推荐 .. 33
 2.1 简介 .. 33
 2.2 法律、管理机构和管理措施 .. 35
 2.2.1 现行法律 .. 36
 2.2.2 管理机构与任务 .. 37
 2.2.3 管理措施 .. 40
 2.2.3.1 地下水总量控制制度 ... 41
 2.2.3.2 建设项目水资源论证制度 ... 41
 2.2.3.3 凿井审批制度 ... 41
 2.2.3.4 取水许可管理制度 .. 42
2.2.3.5 水资源有偿使用制度

2.2.4 先进做法：清徐县统一地下水资源管理

2.2.5 水资源总量控制制度扩展和完善

2.2.6 另一种措施：通过经济和土地使用规划来管理地下水资源

2.3 农业用水管控

2.4 工业节水

2.5 开发替代水源与地下水补源措施

2.5.1 加快多种新水源工程建设

2.5.2 非传统水源利用

2.5.3 雨洪水的集蓄利用

2.5.4 水土保持，涵养水源

2.6 地下水水质保护和修复

2.7 最终目标：建设节水型社会

2.7.1 建立地下水动态监测系统

2.7.2 动员广大群众参与：提高地下水保护意识

2.7.3 地下水学校教育

3. 多重收益示范工程

3.1 祁县—平原地区温室大棚高效灌溉经验

3.2 隰县—在黄土高原上发展园艺

3.3 平顺—为特色作物创造一个可控制的生长环境

3.4 离石—发展低温区灌溉

3.5 专题：低温区灌溉研究

3.6 示范工程经验观察

4. 启示和建议

4.1 启示

4.2 政策建议

参考文献

项目执行期间的成果
终期报告

前言

与中国北方其他地区一样，山西省正面临着双重巨大挑战：一是省内经济活动集中地区地下水严重超采，二是气候变化影响日趋严重。尤其在过去十年里，降水减少，降雨量年内分布不均，气温上升等表现得更加明显。地下水作为一个很好的缓冲，本来可以削弱这些不利影响，但其本身现在也面临压力：除了超采外，地下水水质污染也日趋严重。

目前，我们迫切需要改变地下水使用和管理的方式。地下水管理应该包括在当前中国建设绿色国家，发展循环经济的国家政策中。要改变过去“变资源为产品，抛弃所有副代品”的直线性生产模式，大力建设多重紧密衔接生产链体系，最大程度地回用废水，包括处理水。同时，要努力解决水资源供给和消费之间的矛盾，并加强水资源地的建设。

本报告主要讨论山西省地下水管理问题。报告基于“通过地下水管理适应气候变化” 0188-PRC 赠款项目，该项目得到山西省政府和亚洲开发银行的共同支持。气候变化给人类带来很多不确定因素，在此背景下，地下水管理成为社会经济长期发展的一项重要任务。

山西省共有 10 万多个地下水取水点，其中 96%现在仍然在利用。1984 年，山西省地下水开采量为 248.3 万 m3，而到 2000 年，地下水开采量已攀升到 387.3 万 m3；地下水开采年平均增长速度为 3.5 %。近几年来，由于政府相继出台了一系列控制地下水开采的措施，这一增长势头有所遏制。但同时，地下水超采区的面积已占到山西主要平原区面积的 25.4 %，在几个盆地地区地下水水位下降趋势仍在持续。此外，在一些地区比如太原、大同、长治、阳泉、运城等，由于浅层地下水受到不同程度的污染，地下水实际上无法利用。

地下水不像地表水那样可以看得见，但却发挥着令人意想不到的作用，不论是在农业灌溉方面，还是在城乡生活用水供应，以及生态平衡维持，包括河流基本水流维持等方面。就全球而言，农业灌溉用水有 43%来自地下水（Siebert et al 2010）。据估测，全球 40%的工业用水、50%的城市生活用水都来自地下水（Zekster and Everett, 2004）。
河川基流和一些重要的湿地的维持也主要依靠地下水来实现。

地下水的过度开采已经成为我们必须面对的一个难题。全球最大的地下水消费国分别是印度、中国和美国，这些国家都面临着地下水超采的问题。在许多农业区域包括欧洲，水的硝酸盐浓度都很高 — 饮用水的硝酸盐浓度甚至高达 45 to 50 mg/L，如此高的浓度以至于其不能作为饮用水使用。类似情况也正在中国发生。

目前在中国和世界其他地方，有很多社会经济活动和发展趋势都会进一步加大对地下水的开采。全球粮食产量到 2050 年有望提高 60%（基于 2010 年的粮食产量），而同期对棉花的需求将会增长 81%。粮食产量的主要增长（约 89%）都将来自对现有土地的集约化耕作，包括更大面积的复种（9%）(FAO 2010)。不论是集约化耕作，还是复种，都要靠灌溉来实现。人们对园艺作物的需求也会快速增长，这同样会增加对地下水的使用。到 2050 年，城市人口有望达到 63 亿。如果未来一切照旧，那么城市生活方式和污染排放将会给靠近大城市区域的地下水资源带来巨大的压力。

山西省以及整个华北平原正成为人们关注的焦点，因为地下水资源的减少直接影响着这一地区的粮食产量，而华北平原又是世界最重要的粮仓之一，这一地区粮食产量下降会进而促使世界粮食价格上涨 (Evans et al., 2002; Qiu, 2010)。华北平原的小麦产量占全国的二分之一，其玉米产量占全国的三分之一。而这些产量的保证主是依靠大量开采地下水而实现的，并且地下水的开采速度远远大于地下水的补给速度。据一项估测，中国有不少于 1.3 亿人口的饮用水主要依靠对地下水的非持续性开采，同时开采不可再生地下水用于农业灌溉的总量达到了 20km3yr-1(Wada et al., 2012)。除农业用水以外，工业和生活用水量也在不断增加。因而，扭转这一不利趋势不仅对山西而且对全球而言都意义重大。

正如前面所述，本报告撰写的目的是为提高山西省地下水资源管理献计献策。报告第一章讨论了山西省地下水资源现状和所面临的挑战，包括气候变化带来的影响。报告第二章讨论了地下水资源管理问题，探讨了山西省和世界其他地区在此方面积累的经验。报告第三章介绍了在 0188-PRC 赠款项目中建设的几个推广精准农业和高效节水的试点。第二章和第三章都提出在提高地下水资源管理和应对气候变化方面可做的事情仍然很多，比如制定更为严格的法律法规、更好地组织利益团体和个人参与、运用新技术，包括在世界其他地方已经验证的技术，也包括一些创新性技术。报告第四章就未来发展方向，提出一些政策建议。
1. 山西省概况

山西省有悠久的农林业发展历史，而农林业的发展与稀缺水资源的密集开采息息相关。本章主要描述了山西省的主要特点。1.1 节介绍了山西省的地理特征和经济发展状况；1.2 节介绍了山西省的气候特征与气候变化；1.3 节概述了省内地下水资源状况和利用程度；最后，本章 1.4 节概括了山西省地下水管理面临的主要挑战，为报告后面对为实现平衡地下水管理目标而必须采取的措施的讨论做好铺垫。

1.1 自然及社会概况

1.1.1 地理位置

山西省地处华北地区西部，黄土高原东翼，东依太行山与河北、河南两省为邻，西、南隔黄河与陕西、河南两省相望，北跨内长城与内蒙古自治区毗连，四周几乎为山河所环绕，是一个夹峙在黄河中游峡谷与太行山之间的高原地带（见右图1.1：山西省行政分区图）。山西省境的平面轮廓呈长轴在南北方向上的近似平行四边形，地理坐标为东经 110°14′～114°33′，北纬 34°34′～40°43′。南北长约 680km，东西宽约 380km，总面积为 156271km²，约占全国总面积的 1.6%，其中海河流域面积为 59133km²，黄河流域 97138km²。
1.1.2 地形地貌

山脉与河川

按地形起伏特点，可将山西省分为东部山地区、西部高原区和中部盆地区三大部分。

东部山地区以晋冀、晋豫交界的太行山为主干，由太行山、恒山、五台山、系舟山、太岳山、中条山以及晋东南高原和广灵、灵丘、阳泉、寿阳、长治、晋城、阳城、垣曲等山间小盆地组成。区内五台山叶斗峰海拔3058m，是华北地区制高点，全省最低点位于本区西南部垣曲县黄河谷地，海拔245m。

西部高原山地区是以吕梁山脉为骨干的山地性高原，由芦芽山、云中山、吕梁山等山系和晋西黄土高原组成，最高峰关帝山海拔2830m。黄土高原按地貌分类，自北向南可分为黄土丘陵、黄土沟壑和残塬沟壑三个部分。

中部盆地区自东北、西南向纵贯全省，由大同、忻定、太原、临汾、运城等系列雁行式平行排列的地堑型断陷盆地组成，高程自北向南梯级下降，大同盆地1050m，太原盆地750m，至运城盆地降为400m。各盆地广泛分布着黄土和冲洪积物，地形平坦、土地肥沃、工农业发达、城市众多、人口集中，是本省经济繁荣地区。

各种地貌类型占全省面积比重，山地约占72.0%，高原占11.5%，各类盆地为16.5%。

1.1.3 河流水系
山西省河流分属黄河和海河两大流域，大小河流共计1000多条，除运城盆地有极少河流属内河流域外，其它均属外河流域（见右图1.2: 山西省水资源分区图）。流域面积大于1000km²的河流共有44条，流域面积大于4000km²，河流长度在150km以上有8条（不包括黄河），分属黄河和海河两大水系，即：分布在境内西南部的汾河、沁河、涑水河、昕水河、三川河属黄河水系；分布在东、北部的桑干河、滹沱河、漳河属海河水系。黄河流域和海河流域的面积分别占全省面积的62%和38%。（李英明等2003）

山西境内最大的河流为汾河，贯穿境内中部，全长694km，流域面积39471km²，占全省国土面积的25.3%。仅次于陕西渭河的黄河第二大支流，汾河两岸在中、下游地区阶地发育，地面宽阔平坦，地下水量丰富，不仅成为市政工程建筑用地和农业用地，而且也是山西经济发展和人文发达的所在地。然而，由于地表水污染，靠近汾河周边的地下水水水质也受到不同程度的影响。

1.1.4 经济社会概况

2011年全省总人口3593万人，其中城镇人口1785万人，全省平均人口密度为229人/km²。

山西矿产资源丰富，全省已探明的矿种有66种之多，其中煤、铝土矿、耐火粘土、
铁矾土、沸石、建筑用灰岩、玻璃用砂岩等矿种储量居全国第一位，铁矿、镁盐、含钾岩石、珍珠岩居全国第二位；芒硝等矿种居全国第三位。

山西煤炭探明储量达 2560 亿吨，占全国已探明储量的三分之一，2011 年全省原煤生产量 8.7 亿吨，其中外运煤炭 5.8 亿吨。近年来，山西省加大煤炭转化和深加工力度，制定了变输煤为主转为输煤输电并重的经济战略，2011 年年发电量 2344 亿 kWh，向省外输电正在成为山西能源输出的重要方式。

山西现有耕地 5689.8 万亩，有效灌溉面积 1888.9 万亩，实灌面积 1610.9 万亩。2011 年全省造林面积 210.39 万亩，果园面积 419.54 万亩，其中林地主要分布在山西中南部管涔山、关帝山、太岳山、中条山、五台山、黑茶山、吕梁山和太行山八大林区；草地主要分布在雁北干草原区与晋西北灌丛草原区，比较著名的草原有百里香、扁穗冰草、蔷类草原、长芒草、兴安胡枝子、木贼麻黄草原。

山西耕地主要分布在盆地、河谷地带和黄土丘陵区，以种植粮食作物为主，作为主导产业的粮食种类较多，主要有：小麦、谷子、玉米、高粱、莜麦、薯类、糜子、荞麦等。运城和临汾两大盆地是山西最大的小麦产区；晋东南盛产玉米、谷子；忻定、太原两大盆地为山西的高粱产区；莜麦、薯类和荞麦等集中在雁北地区。全省经济作物有棉花、油菜、蚕桑、胡麻、甜菜，其中集中种植棉花的运城市和临汾市是全省乃至全国的主要产地。山西果林分布较广，生产多种温带果品，如苹果、梨、葡萄、核桃、枣、柿子等，其中孝义、汾阳的核桃，稷山、柳林的红枣，清徐的葡萄等极具盛名。2011 年山西农业经济发展状况良好，其中粮食产量 1193 万吨，棉花产量 6.3 万吨，油料作物产量 18.7 万吨。

从 1949 年到 2011 年，山西国民经济保持快速增长，农业经济全面发展，工业生产突飞猛进。2011 年共完成国内生产总值 11100 亿元，人均 GDP 为 30974 元。然而，农村人均 GDP，尤其是山区，却普遍在 10000 元以下，形成了鲜明的对比。

1.2 山西省气候变化

气候变化将改变全球水文循环的现状，从而引起水资源在时空上的重新分配和引起水资源数量的改变，并对降水、蒸发、径流、土壤湿度等造成直接影响。
气候变化对水资源的影响主要表现在以下三个方面：（1）加速或减缓水汽的循环，改变降水的强度和历时，变更径流的大小，扩大洪灾、旱灾的强度与频率，以及诱发其它自然灾害等；（2）对水资源有关项目规划与管理的影响。这包括降雨和径流的变化以及由此产生的海平面上升、土地占用、人口迁移、水资源的供求和水利发电变化等；（3）加速水分蒸发，改变土壤水分的含量及其渗透率，由此影响农业、森林、草地、湿地等生态系统环境。另外，可耕作土地面积也相应减少。

所有这些都要求我们以不同的方式来管理水资源。我们特别需要更好的水缓冲装置，即在雨季能够吸收洪峰流量而在旱季又可以释放河流的水储存设施。而地下水则是最终的水缓冲。通过地下水补充，维持和循环利用来更好地利用地下水资源可以缓和气候变化的影响。山西省目前面临的挑战是由于过度开采，地下水作为水缓冲缓干和高温的功能大大下降。

1.2.1 气温

为了分析山西省不同年代气温在 20 世纪后 40 年的变化情况，分别统计了 20 世纪 60 年代、70 年代、80 年代、90 年代的平均气温，并以 1961-2000 年多年平均降水量为参照，来分析各年代的变化情况。山西省气温整体趋向升高，尤其是 90 年代气温上升明显。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>平均气温（℃）</td>
<td>8.27</td>
<td>8.41</td>
<td>8.46</td>
<td>9.14</td>
<td>8.57</td>
</tr>
<tr>
<td>增减比例%</td>
<td>8.28</td>
<td>-0.47</td>
<td>-1.33</td>
<td>-6.48</td>
<td></td>
</tr>
</tbody>
</table>

从年代对比分析，山西省在 20 世纪后 40 年，60 一 70 年代气温低于 40 年平均气温，从趋势上看基本没有大的变化，80 年代气温略有上升，到了 90 年代，气温突变，较 60 年代增加了 0.87℃，高出平均气温 6.69%。总之，各年代际平均气温总体呈上升趋势。就气温未来走势而言，依据中国气象局国家气候中心（NCC）和中国社会科学院大气物理研究所（IAP）所做的模型预测，包括国外的一些研究模型也表明，中国在 21 世纪将会经历一个明显的变暖过程，其中中国北方冬季变暖最为显著（Ding et al 2007）。
从空间上看，山西省从南往北气候变暖趋势增强，其中山西北部气候变暖最为显著。从总体上看，山西全省除了极少数地区外气候正逐步变暖（Fan and Wang 2011）。山西省在 1961—2000 年 40 年实测气温资料中，最高气温年份发生在 1999 年，年平均气温是10.3℃，是多年平均气温的1.21倍，最低气温年份发生在1967年，年平均气温是7.6℃，是多年平均气温的0.88倍。80年代初期开始，气温变幅增大，90年代气温持续升高，山西省气温的气候倾向率为0.276℃/10a，说明变暖的趋势是每10年增温0.276℃，是中国气温增长率（0.04℃/10a）的7倍。

气温的季节变化表现为：春、秋、冬季均为增暖的趋势，尤其是冬、春季增暖幅度较大：冬季（0.44℃/10年），春季（0.32℃/10年），秋季平均显著气温上升趋势为（0.17℃/10year）。夏季气温基本保持稳定。进入90年代以来，气温变化剧烈，历史最高、最低值均出现在此时段内，且降温幅度较大，于1993年、1996年气温较低。极端气温变化给农业生产及生态环境带来极大的危害。

1.2.2 降水量

山西境内大部分地区年降水量均值介于400～600mm之间。受气候、地形和纬度的综合影响，年降水量在面上的变化比较复杂，具体表现为：降水量变化梯度大，存在众多交替出现的高低值中心。高山区形成降水量高值中心，山脉背风面和盆地区降水量明显偏少，成为低值区。

由于山西省境内山脉多呈北东向或北北东方向排列，水气自南和东南方向入境后，受到层层阻隔，降水自东南向北和西北方向锐减，650mm、600mm、550mm、500mm、450mm五条主线，依次自东南向北排列迂回蜿蜒，呈东北西南向斜贯省境。
1.2.2.1 降水量的年际变化

山西历来干旱。山西省大部分地区的单站年降水量 Cv 值介于 0.25～0.35 之间。Cv 值在地区分布上，总的趋势是自西南向东、东北和西北方向增大。大致以北纬 37°20′ 为界，该纬度以南的地区，Cv 值在 0.2～0.3 之间，Cv 值的变化随降水量的增大而减小之规律较为明显；该纬度以北的绝大部分地区 Cv 值大于 0.3。说明省境内一大半地区年降水量的年际变化强烈。

分析时段内，单站最大、最小年降水量比值，一般介于 2.5～3.5 之间，部分站点高达 4 倍以上，说明年降水量年际间差异较大。

图 1.4 　山西省长系列站年降水量过程线（范堆相等 2005）
1.2.2.2 降水量的年内分配

山西的年降水量季节分配极不均匀，季节变化非常明显。一般来说，冬季干旱少雨，夏季雨水充沛，秋雨多于春雨。

冬季处在极地大陆气团控制下，仅当极地和变性极地气团过境时，产生少量固体降水，且南部多于北部，山地大于川谷；春季由于冬季风势力的减弱和夏季风逐渐活跃，降水量比冬季明显增多，但就总量来说，占全年降水量的比例，大部分地区不足20%；夏季是山西省降水量特别集中的季节，由于受季风影响，降水量高度集中，约占全年总降水量的 60%左右，且越往北部比例越大；秋季正是夏季风过渡到冬季风的转换季节，降水量比夏季显著减少，且分布形式与夏季有所不同，显现出由北向南增加，由高山向盆地减少的趋势。

从多年实测月年平均值来看，降水量年内分配呈单峰型，且连续最大4个月降水量均出现在6～9月。汛期降水量占年降水量的百分比，省内大部分地区介于60%至80%之间。总的趋势是由南向北逐渐增大，图1.5展示了3个不同地区在偏丰和偏枯年份降雨量的具体分布。西南部的运城地区、临汾盆地及沁丹河流域小于70%，汛期降水量多集中于7、8两月，占年降水量的比重大都在40%以上。其规律亦是由南向北
逐渐增大，北部部分地区可达55%以上。

12月至次年3月，是省内降水量最少的时期，4个月降水量仅占年降水量的5%左右，在地区上的差异亦相对较小，变幅在3%～8%之间。

研究分析表明，降雨量的减少与降雨量年内分布变化也有关系。降雨量减少主要表现在雨季（六月到九月）降雨量的减少，尽管雨季后的月份（十月到十一月）降雨量也在减少。山西省中部地区和西部沿线三川河和汾河之间的区域降雨量减少最为明显（樊、王2011）。这些地区同时也是省内经济活动聚集，地下水超采严重的区域。

图1.6 山西省季节雨量变化趋势（1959～2008）（来源：樊、王2011）
图 1.7 主要水文测站典型年降水量月分配图（范堆等 2005）
如果山西省在过去的半个世纪里所经历的气候变化趋势在未来继续持续的话，那么山西省从南到北干旱梯度将增大，而温度梯度可能会减小。

1.2.3 水面蒸发与干旱指数

水面蒸发量是反映当地蒸发能力的指标，是指充分供水条件下的陆面蒸发量。水面蒸发量的大小一般与温度、饱和差、风速等因素有关，温度高、饱和差大、风速大，蒸发量大，反之则小。山西省春季蒸发量最大，占年蒸发量的35%，汛期蒸发量为45%。在这些季节，保持水分减少蒸发尤其重要。

蒸发能力和降水量之比，称为干旱指数或干燥度，是反映气候干湿程度的一个指标。由恒山北麓、内长城以北，过黑驼山继续向西北而后穿越内长城进入晋西高原，于临县西南跨黄河入陕西，是一条干旱指数为2.5的等值线，该线以北的晋北、晋西北广大地区，干旱指数在2.5以上，属半干旱地区；南部及东南部，包括漳河、沁丹河流域以及中条山区，绝大部分地区干旱指数在1.5～2.0之间，属半湿润地区。

省内干旱指数大致变化在1.5～3.5之间，属于半湿润和半干旱区。山区较小，盆地较大，大同盆地和桑干河上游干旱指数在3.0以上，晋西北大部、太原盆地及运城盆地在2.5～3.0之间。

1.3 山西省地下水资源

地下水开采在山西乃至中国都有悠久的历史，早在两三千年前中国凿井技术就已经很先进了。然而，自二十世纪六十年代以来，人们对地下水的开采利用开始加速发展，现在我们所使用的水的一半之多都来自于地下水，而所开采的地下水源也越来越深。

1.3.1 地质

山西省地层发育较为齐全。由老至新有：太古界（阜平群、五台群）；元古界（滹沱群）；震旦亚界（震旦系）；古生界（寒武系、奥陶系、石炭系、二迭系）；中生界（三迭系、侏罗系、白垩系）；新生界（第三系、第四系）。缺失志留系、泥盆系及下
石炭系、上奥陶系各地层。

山西地处阴山东西构造带以南，秦岭东西褶带以北，河东（指黄河以东）和石家庄—安阳两个南北向构造带之间的一个较活动的地块——“山西陆台”。

太行山脉是新化夏系构造的隆起带。祁吕弧形构造带斜贯山西陆台，其展布范围内，主要为吕梁山和恒山。而滹沱—汾河陆槽则是与太行陆梁相辅而行的复式向斜，呈 NNE 向，南北两端因与祁吕褶带的多字型槽地复合而转弯，总体上呈拉长的 “S” 型。东西向构造，主要集中于山西陆台的南北两端；南北向构造在山西陆台的内部表现并不突出。由此可见，区内主要受新华夏构造体系和祁吕弧型构造带及其复合的控制；外貌上由西向东逐渐昂起，附带局部陷落。

总观全区，在山西陆台之上，有五个主要构造单元，即：河东南北向挠褶带；吕梁—恒山褶带；滹沱—汾河陆槽；晋东台凹；太行陆梁。

1.3.2 区域水文地质条件

按含水岩类特性和地下水赋存条件，主要有三大类，即松散岩类孔隙水，碳酸盐岩类岩溶裂隙水和变质岩、变质岩及碎屑岩裂隙水。

松散岩类孔隙水主要分布在中部盆地地区的五大断陷盆地，含水岩组以第四系各种河湖相松散沉积物和冲积洪积地层为主。该类地下水补给来源，以大气降水的垂直入渗为主，约占补给总量的 70%，其次是边山侧向补给和岩溶水排泄区的碳酸盐岩类岩溶水。

碳酸盐岩类（第二大类含水层）主要分布在太行、吕梁，太岳诸山及晋西北地区。岩溶发育具有典型的北方地下隐伏岩溶裂隙发育的特点，岩溶化程度受气候影响，自晋西北向晋东南逐渐增强。对每个岩溶泉域，自上游补给区向下游排泄区，因径流增大，溶蚀加强，岩溶化程度随之提高。下古生代碳酸盐岩类是省内主要岩溶含水地层，娘子关、神头、晋祠等大泉均发育于奥陶系中统。除灰岩裸露区直接接受降水渗入补给外，灰岩区河流，特别在横切河道的构造破碎带上，地表水大量漏失，也是岩溶水一项重要的补给来源。

最后，变质岩、碎屑岩类地层（第三大类含水层）省内出露面积约 8 万 km²，地下
水赋存于风化裂隙和构造裂隙之中，含水层埋深较浅，作为山区基流以散泉形式排出，因径流过程短，调节能力差，泉水流量小而不稳。

1.3.3 地下水资源及可开采量

根据山西省第二次水资源评价结果，全省多年平均（1956~2000年）水资源总量123.8亿m³。其中，地表水资源量（河川径流量）86.77亿m³，地下水资源量（降水入渗补给量）84.04亿m³，河川基流量（重复计算量）为47.01亿m³。按2010年人口及耕地面积计算，全省人均占有资源量369m³，仅相当于全国人均2221m³的16.6%，远低于国际公认的人均1000m³的严重缺水界限，亩均189m³，仅为全国水平的9.4%。山西省水资源结构见图1.8。（范堆相等2005）

地下水的总量随着地下水补给量和使用量的变化，也在逐年发生变化。地下水可开采量是指经济合理、技术可行和利用后不造成地下水水位持续下降，水质恶化、地面沉降等环境地质问题和不对生态环境造成不良影响的情况下，允许从含水层中取出的最大水量。全省分三种情况计算开采量：即盆地平原区孔隙水可开采量、岩溶山区岩溶水可利用量、一般山丘区孔隙裂隙水可开采量。

全省地下水可开采量为51.38亿m³/a，其中：盆地平原区孔隙水可开采量为24.52亿m³/a，岩溶山区多年平均岩溶水可利用量为21.08亿m³/a，一般山丘区孔隙裂隙水可开采量为5.78亿m³/a。（范堆相等2005）

1.3.4 地下水开发利用历史

山西省地下水开发利用历史悠久，凿井取水以润田园的历史可追溯到唐朝，甚至更远，特别是城廓周围的菜园有相当一部分是利用井水灌溉，解放前地下水开采量很少，解放后随着工农业生产的发展和人民生活水平的提高，地下水的开采量也逐年增加，已成为山西省工农业生产及生活的主要供水水源。山西省地下水的开发利用历史大致可分为四个阶段。

第一阶段：60年代中期以前。此阶段国民生产力发展水平较低，地下水开采量较小，以开采第四系浅层水和石炭系层间岩溶裂隙水为主。从井型上看，多以浅井和
“大锅锥井”为主，提水方式多采用辘轳吊筒式提水，主要用于人畜吃水和灌溉。对于岩溶泉的利用，从此阶段开始进入了具规模的开采阶段，1957 年以兰村泉为水源的兰村水厂正式投产，供城市生活用水，1957 年至 1960 年三年间平均开采 12 万 m³/d；1958 年开始在郭庄修建“七一”渠，引郭庄泉灌溉农田。到 60 年代中期，岩溶大泉流量衰减问题还不很突出。

第二阶段：60 年代中期到 80 年代初期。随着国民经济的发展，城市居民生活、公共事业及工业生产用水的不断增加，全省进入了大规模开发地下水时期，兴建打井高潮，成井技术和提水设备也有了显著提高。1979 年全省总用水量达到历史最高值，地下水开采量达 26.3 亿 m³。特别是农业灌溉也开始大量开采地下水，先后建成一些井田工程，井灌面积发展迅速，机井配套近十万眼，有效灌溉面积达 1736 万亩。农业灌溉 1979 年用水量为 50 亿 m³，占总用水量的 78.6%，农业灌溉开采地下水 16.7 亿 m³。农业用水量的猛增，使地下水的开采从浅层转向中深层。各种类型的地下水开始全方位开采，深层岩溶水也进入了勘探开发利用阶段。当时由于缺乏统一规划，统一管理，形成地下水大规模无序开采状况。此阶段岩溶泉水的利用量也迅猛增加，主要用于工业和农业灌溉，其开采形式，主要以泉域内凿井与泉口提水相结合。如 70 年代，晋词泉域边山开采岩溶水进一步增加，工农业井达到 44 眼，泉水流量减为 0.66 m³/s，致使圣母、善利两泉断流。娘子关电厂投入运行后，在泉口提水供生产生活用水，使娘子关泉的开采量猛增，取水量约 4.5 m³/s。1972 年霍州电厂建成投产后，在泉区凿井 37 眼取水，使泉水水位逐渐下降，不少泉眼断流干枯。随着太原市城市规模的不断发展，兰村水厂开采量不断增加，70 年代开采量为 14.9 万 m³/d，到 1980 年增至 26 万 m³/d，使兰村泉流量急剧下降至 0.21 m³/s。总之，在这一阶段，由于地下水的过猛开采，局部地区出现地下水水位下降，部分浅层水井水量减少或干枯，泉水流量减少，部分泉眼断流。（潘军峰等 2008）

第三阶段：80 年代到 90 年代初期。进入 80 年代，特别是改革开放带来的经济迅速发展，各行各业对水资源的需求量迅猛增长，地下水的开采量也呈逐年增加的趋势。1984 年全省开采地下水为 24.83 亿 m³，到 2000 年全省开采地下水为 38.73 亿 m³，平均每年以 3.5%的速度增长。80 年代，工业、城市发展较快，对地下水的开采量逐年增加，1984 年工业开采地下水为 5.86 亿 m³，增加到 2000 年的 9.32 亿 m³，增长速度为每年 3.7%，城市生活取用地下水 1984 年为 1.95 亿 m³，到 2000 年增加到 3.98 亿 m³（不包
括商品菜田用水），平均增长速度为 6.5%。加之山西是全国主要煤炭生产基地之一，煤炭开采引起水资源的破坏，大量浅中层地下水排出；此阶段地下水开采出现了大范围的超采区，到 2005 年全省超采面积达 11137km²，超采量达 6.88 亿 m³。（山西省水资源管理委员会办公室 2008）

第四阶段 90 年代以后：控制开采地下水阶段，地下水开采量呈下降趋势。地下水控制在 35 亿 m³左右。然而，在其他一些地区比如大同和山西中部盆地地区，地下水过度开采持续，地下水水位仍在不断下降。

根据山西省各行业 2010 年用水统计，农业仍然是最大的水用户。农业取水量达到 17.38 亿 m³（农业灌溉 15.79 亿 m³，林牧业 1.59 亿 m³），占全省开采量的 48.9%；工业是第二大用水户，工业取水量达到 9.70 亿 m³，占全省开采量的 27.3%；建筑业取水量 0.32 亿 m³，占全省开采量的 0.9%；第三产业取水量 1.25 亿 m³，占全省开采量的 3.5%；生活取水量 6.19 亿 m³（城镇生活 3.56 亿 m³，农村生活 2.63 亿 m³），占全省开采量的 17.4%；生态（河道外）取水量 0.70 亿 m³，占全省开采量的 2.0%。各市地下水用开采量统计见表 2.1，开采量分布见图 1.8。（山西省水利厅，2010）

根据中央实行严格水资源管理的要求，地下水作为一种战略资源，开展了“关井压采”保护行动。可将地下水开采量压缩在 20 亿 m³以下。

目前以得到各级领导的高度重视，建立健全了省、地、县三级水资源管理机构，制定了一系列的水资源管理法规和政策，对地下水资源开发利用实行统一审批与统一

图 1.8 山西省水资源结构图

根据山西省各行业 2010 年用水统计，农业仍然是最大的水用户。农业取水量达到 17.38 亿 m³（农业灌溉 15.79 亿 m³，林牧业 1.59 亿 m³）。占全省开采量的 48.9%；工业是第二大用水户，工业取水量达到 9.70 亿 m³，占全省开采量的 27.3%；建筑业取水量 0.32 亿 m³，占全省开采量的 0.9%；第三产业取水量 1.25 亿 m³，占全省开采量的 3.5%；生活取水量 6.19 亿 m³（城镇生活 3.56 亿 m³，农村生活 2.63 亿 m³），占全省开采量的 17.4%；生态（河道外）取水量 0.70 亿 m³，占全省开采量的 2.0%。各市地下水用开采量统计见表 2.1，开采量分布见图 1.8。（山西省水利厅，2010）

根据中央实行严格水资源管理的要求，地下水作为一种战略资源，开展了“关井压采”保护行动。可将地下水开采量压缩在 20 亿 m³以下。

目前以得到各级领导的高度重视，建立健全了省、地、县三级水资源管理机构，制定了一系列的水资源管理法规和政策，对地下水资源开发利用实行统一审批与统一
管理制度，水管理由第二阶段的无序状态走向了有序管理使用阶段，岩溶泉域也成立了相应的管理机构，使开发利用与保护协调发展。

图 1.9 山西省各行业地下水开采量比例图

表 1.2 2010 年山西省行政分区地下水开采量调查统计

<table>
<thead>
<tr>
<th>行政区</th>
<th>生活</th>
<th>第一产业</th>
<th>第二产业</th>
<th>第三产业</th>
<th>生态（河道外）</th>
<th>合计</th>
</tr>
</thead>
<tbody>
<tr>
<td>太原市</td>
<td>8861</td>
<td>10838</td>
<td>15521</td>
<td>5463</td>
<td>3102</td>
<td>43785</td>
</tr>
<tr>
<td>大同市</td>
<td>7804</td>
<td>19939</td>
<td>9752</td>
<td>1054</td>
<td>851</td>
<td>39399</td>
</tr>
<tr>
<td>阳泉市</td>
<td>1396</td>
<td>968</td>
<td>2965</td>
<td>104</td>
<td>22</td>
<td>5455</td>
</tr>
<tr>
<td>长治市</td>
<td>6820</td>
<td>4713</td>
<td>9410</td>
<td>988</td>
<td>364</td>
<td>22295</td>
</tr>
<tr>
<td>晋城市</td>
<td>4600</td>
<td>4020</td>
<td>15906</td>
<td>1267</td>
<td>522</td>
<td>26314</td>
</tr>
<tr>
<td>朔州市</td>
<td>3233</td>
<td>15425</td>
<td>2634</td>
<td>216</td>
<td>179</td>
<td>21687</td>
</tr>
<tr>
<td>忻州市</td>
<td>3810</td>
<td>14697</td>
<td>5975</td>
<td>536</td>
<td>57</td>
<td>25074</td>
</tr>
<tr>
<td>吕梁市</td>
<td>6130</td>
<td>10062</td>
<td>9265</td>
<td>787</td>
<td>336</td>
<td>26580</td>
</tr>
<tr>
<td>晋中市</td>
<td>6263</td>
<td>32413</td>
<td>10992</td>
<td>958</td>
<td>1026</td>
<td>51652</td>
</tr>
<tr>
<td>临汾市</td>
<td>5367</td>
<td>17102</td>
<td>8453</td>
<td>316</td>
<td>252</td>
<td>31491</td>
</tr>
<tr>
<td>运城市</td>
<td>7595</td>
<td>43614</td>
<td>9440</td>
<td>864</td>
<td>293</td>
<td>61806</td>
</tr>
<tr>
<td>合 计</td>
<td>61878</td>
<td>173791</td>
<td>100315</td>
<td>12550</td>
<td>7004</td>
<td>355537</td>
</tr>
</tbody>
</table>

1.4 地下水面临的挑战

由于历史上对地下水的过度开采，山西省地下水面临一系列严重的挑战：

22
地下水过量开采，形成了大范围的地下水降落漏斗

气候变化对地下水资源影响

地面沉降

岩溶大泉流量不断减少甚至断流

地下水资源污染加剧，水环境条件恶化

煤炭开采对地下水资源的影响

1.4.1 地下水过量开采，形成了大范围的地下水降落漏斗

从70年代开始，由于对地下水缺乏统一规划、统一管理、统一开发，出现了水井分布不均、地下水水位下降、局部地区超采。从2010年开发利用程度看，盆地区超采面积达6903km²，占盆地总面积的25.4%。在太原市、晋中市、运城市超采面积已占全市盆地面积的40%以上，太原市高达79.8%。从超采区分布情况看，超采区大部分分布在地下水补给条件较好，水量丰富，开发利用条件优越的边山冲洪积扇及盆地的中部，为城市及工农业集中开采地下水地带。高强度、不合理的开采状况改变了区域地下水天然流场，形成了多处大面积地下水降落漏斗。（见图1.10）（山西省水资源管理委员会办公室2008）

图1.10 太原市城郊地下水漏斗剖面示意图
图 1.11 大同市城郊地下水漏斗剖面示意图

图 1.12 运城市涑水盆地地下水漏斗剖面示意图
1.4.2 气候变化对地下水资源影响

地下水比地表水更能适应不同的气候和气候变化。与地表水相比，地下含水层可以储藏大量水分，这样当温度和降雨量发生季节性变化时，地下水就可以起到很好的缓冲作用。因此，地下水在适应不同水文条件和气候变化过程发挥了关键作用。然而，地下水在气候变化和水文循环发生改变时也会表现出其脆弱性。气候变化对地下水的影响体现在地下水补给变化和水需求变化两个方面。

地下水的补给是决定我们能否持续利用地下水的关键因素（Doll and Florke 2005）。雨水是地下水补给的核心来源，降雨分布的变化将会影响地下水补给。温度和二氧化碳浓度同样也很重要，因为它们影响着土壤水分蒸发蒸腾损失总量，决定渗透到含水层的雨水总量。

当强降雨发生时，土壤的渗透能力很快就会达到极限，从而导致径流量和河流流量增大，而渗透到地下水层的雨水量减少。不同土壤对强降雨的反应也不同 – 在强降雨发生时瘠土可以使更多的水分直接渗透到质层中。由于长期反复干旱，土壤表层会结壳形成疏水性土壤，这样将会导致下雨时径流扩大、地下水补给减少。而在另一些地区，地下水是通过地表水体或通过大孔隙和缝隙补给的区域，强降雨则会增加地下水的补给（Döll and Florke, 2005）。季节变化对于地下水的补给也很重要，因为频繁的干旱或夏季降雨量的减少会使土壤的湿度大幅降低，从而缩短地下水补给周期（Döll and Florke, 2005）。

根据山西省第二次水资源评价成果，山西省盆地多年平均地下水的补给主要是大气降水，占地下水总补给量的 48.8%；其次是山前侧向补给，占 28.3%；地表水渗透补给，17.7%。（范堆相等 2005）

全省第一次水资源评价成果采用 1956～1979 年系列计算，多年平均降水量为 534mm，全省水资源总量为 142 亿 m³；全省第二次水资源评价成果采用 1956～1979 年系列计算，多年平均降水量为 508.8mm，全省水资源总量为 123.8 亿 m³。两次水资源评价成果对比：降水量减少了 5.3%，而水资源总量减少了 12.8%。（范堆相等 2005）
山西省气候变化对地下水的影响可以归纳如下：

- 降雨量的减少意味着地下水补给的减少，尽管二者之间的关系并非直线性的。气温上升导致蒸发量的加大，从而减少地下水的补给。
- 降雨量的减少和气温的上升还会促使对水的需求量增大，从而导致地下水的过度开采利用。气温的上升（尤其是秋季、冬季和春季）和霜冻期的缩短会使山西省北部寒冷地区的作物种植期延长，从而提高农业用水需求。
- 随着降雨模式的改变，地下水的补给方式同样也发生了变化。气候变化导致降雨量的减少主要体现在夏季降雨量的减少上。这样，原本直接雨水补给方式会发生变化，地下水补给量取决于土壤的类型也会减少。随着降雨量全年分布的均衡化，从地表水渗漏和山前侧向补给量会增大。另外，我们还可以通过其他地下水补给措施和洪峰扩散方式来进一步提高地下水补给量（具体参见下几节的介绍）。

1.4.3 地面沉降

超量开采地下水，使含水层中水的浮托力与松散岩层孔隙水的支持力消失，增大了粘性土或砂性土的压缩性，同时，改变了自然状态下地下水的流向、流速、水力坡度，部分增加了地下水潜蚀、搬运能力，使土体收缩，而产生地面沉降；由于不均匀沉降出现了地裂缝。全省以开采地下水为主要水源的城市，如太原、大同、运城涑水盆地及晋中、榆次、介休均发现不同程度的地面沉降和裂缝。

据太原市城建部门 1985、1987 年与 1989 年的 1365 个精密水准点测量结果可以看出，太原市地面整体呈偏漏斗型下沉趋势，范围北起迎新街、南到晋阳湖、东至省原党校、西至金胜村南北长约 15km，东西宽约 8km，年均沉陷 37～114mm，大漏斗中又以吴家堡（亦是地下水漏斗中心）、下元一河西中学、迎新商场分别为中心，形成三个小沉降中心。由于地面下沉，吴家堡大马村一带已出现建筑物裂缝，积水排不出去等现象，市区内的地下管道断裂现象也可能与地面下沉有关。（范堆相等 2005）

大同市地面沉降始于 70 年代末，系统监测工作始于 1988 年。根据 1988 年～1993 年监测资料，目前大同市区有两个地面沉降中心，分别位于时庄～西韩岭一带和利群制药厂一带，其中最大累计沉降量为 124mm，平均沉降速度为 24.8mm/a，一般累计沉
降量为 40～50mm，平均沉降速度为 8～10mm，大于大同盆地区域沉降速率 3mm/a。地裂缝最早发现于 1983 年，当时仅在大同机车厂生活区发现一条长 1.3km 地裂缝带，1993 大同地裂缝已增加到 7 条，总长度 20.6km。大同市地面沉降区与地下水落漏斗在时空分布上，有较好的对应关系，地下水过量开采是产生地面沉降的主要因素之一，而地面裂缝的分布与地下水位降落漏斗分布还存在一定的相关性，主要反映在地下水落漏斗的形成和发展增强了地裂缝的活动。

晋中榆次源涡及介休义棠、义安等处，由于受区域水位大幅度下降的影响，局部出现地面沉降和裂缝。如位于源涡水源地附近的潇河枢纽工程—潇河大坝，由于源涡水源地水位持续下降，1978 年已降至潇河水平以下，1988 年以后，已低于温河水平 46.6m，致使河谷松散层孔隙水位亦相应降低，成为潇河大坝沉陷的主导因素。铁道部等十二工程局 1983 年在介休义棠、义安一带进行了水准测量，发现有三处水准点下降 100 多 mm，1985 年以来一些抽水井曾多次出现“拔井”现象，泵房和车库均出现裂缝。

运城涑水盆地由于大面积的地下水超量开采，地下水位持续下降，在盆地边缘一带已出现大的裂缝及一些滑坡体。

1.4.4 岩溶大泉流量不断减少甚至断流

岩溶泉水流量集中，水质优良，是山西省城市及能源基地重要的供水水源。70 年代以前岩溶泉水开发利用规模还不大，70 年代以来，由于工农业发展较快，城市用水量的增大，对岩溶水的开发利用量大大增加，采取群井抽水方式建立了水源地，农村也开始在补给径流区打井取水。由于缺乏统一规划，盲目开采，加之近年来气候偏早，各泉域降雨量普遍比往年平均降雨量减少 3～10%，直接影响岩溶水的补给：致使岩溶泉水一直处于流量下降的趋势。据 16 个岩溶大泉有实测流量资料统计表明与 80 年代相比，泉水流量下降了 30%。其中晋祠泉、兰村泉、古堆泉等 3 处泉已干枯断流，郭庄泉、洪山泉等 2 处泉频临断流。岩溶泉水流量的减少，严重危及工农业生产与城市居民的正常生活，应采取相应措施，加强岩溶水资源的保护。（潘军峰等 2008）
图 1.13 十六个岩溶大泉的实测泉流与降水量对比图

图 1.14 晋祠泉：1986 年（左），2005 年（中、右水流为人工抽水循环）
1.4.5 地下水污染

地下水污染是山西省一个主要关注焦点。地下水水质的污染主要来自两个方面，一是城市及工业的废污水的排放造成的点污染；二是农业生产化肥和农药的使用造成的非点污染。据统计，80年代以来，全省工业生活污废水排放量逐年增加，1980年为5.5亿m³，1984年为6.9亿m³，2000年达9.45亿m³，以后废污水的排放量基本控制在10亿m³，其中95%未经处理直接排入河道、农田，流水入库或渗入地下，根据有关资料分析，太原、大同、阳泉、长治、运城、永济等一些地区深层地下水遭到不同程度污染。而在地下水漏斗区，由于水位不断下降，井愈打愈深，有的井上部井壁封闭不严，或不加封闭，有些井开采混合水，这样的井实际上成为浅层污染水进入中深层的通道，使中深层水亦遭受不同程度的污染。近年来，岩溶水的大量开采，城市污水沿岩溶河谷排放渗漏，采煤、矿坑废水通过竖井排放等人类活动的影响，岩溶水环境条件发生了很大变化，岩溶水已受到不同程度的影响或污染。（范堆相等2005）

随着乡镇企业的发展，地下水无序开采加剧，地下水污染已由过去城市工业区的点污染，逐步向面上及垂向发展，水质污染问题更加严重，加剧了本已短缺的水资源紧张局面。
化肥和农药污染也是山西省和全国其他地区所面临的一个严重问题。在中国由于农业上大量使用氮肥，造成土壤的大面积酸化。根据对全国土壤的两次调查对比发现–从上世纪 80 年代到 2000 年 Ghuo et al.（2010），在全国很多地区土壤已经变得非常酸化以至于不适合再种植某些作物。化肥的大量使用也是造成氮流入地下水的原因，致使地下水不再适合人类饮用，且污染地下水处理上也很困难。总体而言，主要农业区域的土壤的有机物质正在减少。为恢复和长期保持土壤质量，减少对化肥的持续依赖，我们有必要改用生物肥料、生物碳或者其他土壤添加剂，比如沸石。

1.4.6 煤炭开采对地下水资源的影响

山西省煤炭资源极其丰富，含煤地层面积约占全省总面积的 40%，现有煤炭资源总量为 6400 亿吨 (2000m 以浅)。自北向南分布有大同、宁武、河东、西山、霍西及沁水六大煤田和浑源、五台、平陆、垣曲等煤产地，在全省县一级的 118 个县市区行政区中，就有 94 个县市区分布着煤田。不论是探明储量还是开采量均属全国首位，山西省出产的煤炭资源不仅在国内市场销售，而且还运销国际市场。

水煤资源共存于地质体中，采煤必定要破坏地下水资源，首先是改变了地下水自然循环状态，有开采前的水平运动为主，变为垂直运动。地下含水层被疏干，地下水补给来源被阻断，导致地下水水位下降，泉水断流，地面发生剧烈沉降，根据山西省第二次水资源评价专题研究报告《山西省煤矿开采对水资源影响研究》的成果，按山西省统计年鉴公布的 2000 年原煤产量计算，生产一吨煤影响、破坏 2.54 吨水资源。同时大量的采矿废水的排放对地表水体产生较大的污染等造成了一系列的环境问题。（牛仁亮等 2003）

在许多地区，从煤堆、煤挖掘装卸设备、洗煤厂甚至煤矸石堆上流出的液体通常是高酸性的，尤其含有大量硫化物矿物等。当煤矿酸性废水通过与净水或中性矿物质接触后，其 pH 值会超过 3，这是原本可溶性铁（III）就会沉淀为铁（III）的氢氧化物，是一种橘黄色的固体，俗称“金币”。酸性煤矿废水还含有大量的微量矿物质和重金属。
图 1.17 煤矿生产矿井

图 1.18 煤矿矿坑排水
图 1.19 煤矿开采造成房屋裂缝和地面裂缝

图 1.20 煤矿开采造成地面裂缝和塌陷
2. 高效地下水管理经验推荐

2.1 简介

在前一章，报告阐述了地下水管理面临的挑战。这些挑战包括地下水超采、地面沉降、煤矿开采带来的污染、以及工业和农业污染；地下水超采现象虽然得到了控制，但在省内中部盆地区和山区岩溶泉域地带仍然存在地下水开采和补给失衡现象（见图2.1）。

作为战略性资源的地下水同时还受到气候变化的影响。气候变化致使山西省降雨减少、气温上升。在气候变化影响下，一方面寒冷地区可耕作土地面积增加、水需求上升；另一方面，降雨量的减少意味着地下水补给的减少；故此，地下水面临着双重挑战。原则上，地下水应该发挥其在气候变化背景下的缓冲作用，但是山西省的地下水，尤其是经济发达的中部盆地地区，却面临着过度开采和水质下降的压力。
目前山西省需要严格控制地下水开采使用，保护地下水水质。本章介绍了一系列促进地下水高效管理的方法措施，旨在帮助山西省更好地应对地下水过度开采、气候变化等带来的不利影响。山西省的政策目标是把地下水开采量由原来每年 35 亿 m3 降
低到每年 20 亿 m³（具体见第一章阐述）。而在实现这一目标同时又必须维持生产力水平不下降，并进一步推动山西省社会经济全面发展。很明显，要实现这一宏伟目标，必须实施一系列综合措施，并配套有强有力的法律机制保障。除了减少水消耗，提高水产值外，还必须采取一切措施补给涵养地下水，并大力推广非传统替代水资源的利用。

本章借鉴了山西省当前的一些创新做法和国际一些先进经验。本章首先讨论了山西省地下水管理方面的法律和机制依据（第 2.2）。然后，在第 2.3 和 2.4 节中，讨论了如何减少农业和工业水消耗。第 2.5 节讨论了如何通过地下水系统补给、扩大使用地表水和非传统水资源等措施来增加水供给。第 2.6 节阐述了应该采取什么措施来保护地下水水质。本章最后探讨了如何实现到 2020 年建成节水型社会目标的问题，这同时也为世界上面临类似挑战的其他地区树立一个很好的典范（第 2.7）。

2.2 法律、管理机构和管理措施

要管理地下水，并保护地下水水质，一个完善的法律和制度框架至关重要。在此制度框架下，地下水开发的主要过程可以得到控制，同时地下水管理与土地开发，土地使用规划以及整个经济发展可以得到有机整合。法律和制度框架为可持续地下水管理提供了依据：实现可持续地下水管理需要部署一系列行动，并需要专门资金支撑，管理的目的并不只是调控，更重要的是管理地下水资源，增加地下水供给量。

山西省地下水资源经历了时代的变迁，目前在地下水资源管理方面出台了一系列国家、省和地方法规。80 年代以前，地下水资源处于无政府管理状态阶段。受科学知识水平的限制，人们对地下水资源认识不足，认为地下水是“取之不尽，用之不竭”，是上帝赐给人们生存和发展的之物。

由于当时打井技术落后，地下水资源开发利用程度很低。如第一章所述，80 年代后情况发生了巨大改变，出现了大量的开挖水井。随后，部地下水资源管理和法规和标准相继出台，山西省也因此成为国内地下水资源管理的先驱。1982 年 7 月山西省政府决定成立了山西省水资源管理委员会，同年全省市，县三级水资源管理机构相继成立，主要负责协调解决经济社会发展中各部门相互争水矛盾和水事纠纷，开展水资源开发、利用、节约、保护规划工作，制定加强水资源管理，合理开发，规范地下水资源，等一系列方针、政策。使水资源管理逐步进入法制化、制度化、规范化。在这一阶段山西省相继出台了以下法规：《山西省水资源管理条例》、《山西省地下水资源管理
《中华人民共和国水法》、《山西省泉域管理暂行办法》、《山西省城镇和工矿节约用水规定》、《山西省征收水资源费暂行办法》和《山西省人民政府关于严格控制打深井的通告》。

本节主要讨论了山西省在地下水管理方面一些重要法律法规、行政措施和管理条例等（第 2.2.1 到 2.2.3 节）。本节还建议了一些额外的法规措施，使地下水管理走上更高层次，更好地协调水资源与经济发展和土地利用规划之间的关系，并介绍了一个完善的水配额体系（第 2.2.4 和 2.2.5）。

2.2.1 现行法律

山西省可持续地下水管理是依据国家和山西省制订的一系列法律法规来进行的。这些法律法规为地下水管理提供了坚实的法律基础。以下是主要法律法规的介绍：

(1) 《中华人民共和国水法》

《中华人民共和国水法》是 1988 年 1 月 21 日经六届全国人大常委会第二十四次会议通过，并于同年 7 月 1 日起施行的。2001 年对《水法》进行了修改。于 2002 年 8 月 29 日第九届全国人民代表大会常务委员会第二十九次会议通过，并予公布，自 2002 年 10 月 1 日起施行。全法分八章，新《水法》的颁布标志着我国从传统水利转变为现代水利和可持续发展水利转变，依法治水进入全面推进节水防污型社会，保障经济社会可持续发展的新阶段。

(2) 《取水许可和水资源费征收管理条例》

《取水许可和水资源费征收管理条例》由中华人民共和国国务院 460 号令颁布施行，于 2006 年 1 月 24 日国务院第 123 次常务会议通过，并予公布，自 2006 年 4 月 15 日起施行。

(3) 《山西省水资源管理条例》
《山西省水资源管理条例》于 1982 年 10 月 29 日第五届人民代表大会常务委员会第十七次会议批准。根据 1994 年 9 月 29 日山西省第八届人民代表大会常务委员会第十一 次会议通过的《关于修改<山西省水资源管理条例>第十九条第一款的决定》修正， 2007 年 12 月 20 日山西省第八届人民代表大会常务委员会第三十四次会议修订。

（4）《山西省泉域水资源保护条例》
《山西省泉域水资源保护条例》于 1997 年 9 月 28 日第八届人民代表大会常务委员会第三十次会议通过，并于 1998 年 1 月 1 日起施行。根据 2010 年 11 月 26 日山西省第十一届人民代表大会常务委员会第二十次会议关于修改部分地方性法规的决定》修正，2010 年 11 月 26 日山西省第十一届人民代表大会常务委员会第二十次会议会议通过。

（5）《取水许可管理办法》
水利部令第 34 号，2008 年 3 月 13 日水利部部务会议审议通过施行。

（6）《建设项目水资源论证管理办法》
中华人民共和国水利部与国家计委颁布的第 15 号令，自 2001 年 5 月 1 日起施行。

2.2.2 管理机构与任务
水利部是国务院的水行政主管部门，并负责全国水利行业管理。那么各级水行政管理单位就是水行政主管部门。具体到山西省，水利厅就是山西省水行政主管部门。这一法律框架是由以上法规设定的，这些法规包括《中华人民共和国水法》、《水污染防治法》、《环境保护法》、《山西省水资源管理条例》、《山西省泉域水资源保护条例》、《山西省地下水资源管理暂行办法》。

水利部的职能包括以下四个主要方面:

- 一是制定水利行业统一的政策、法规、规章，使行业活动有法可依，管理纳入法制化的轨道。

- 二是组织制定统一的行业发展规划，使行业活动必须按照规划进行规范，不得各行其是。

- 三是制定统一的技术规范、标准、定额，使行业活动有章可循，对违法行为查处有据。
四是制定行业管理基本制度，如水利工程项目审批制度、取水许可制度、水资源论证制度、水利成果评审制度等。（贾泽民等 1990）。

尽管如此，目前山西省地下水资源行政管理，既有水利部门，又有城建部门、国土资源部门和环境保护部门，形成了多龙治水的格局，造成人力物力资源的重复投入、浪费及遇事扯皮，信息不能共享，各自为政。城建部门管理的主要围绕城市供水展开的，包括自来水供水、节约用水。由于山西省大部分城镇的供水系统的供水水源是开采地下水，因此城建部门对地下水资源管理主要是城市自来水公司（发展规划、水源地建设）和其用水户的节水管理，但自来水公司取水许可管理归属水利部门管理；国土资源部门参与部分地下水勘探与监测管理；环境保护部门主要是以水源地的保护进行管理。

由此而言，协调各个行政部门和不同层次的管理部门之间的相互合作，以及确保法律法规在不同层次（省、市、县）的落实实施，就显得尤为必要。在此必须制定一个统一的方案，以协调各方的工作；另外还必须附带相应的行动方案，以落实水资源的需求管理和供给管理（地下水补给和维持）措施。这些方案和活动最好能够达到一定规模，这样才可以带来有力的影响和系统的变化。其他国家实际上也在采取这些措施。表 2.1 具体列举了一些实例。

<table>
<thead>
<tr>
<th>地区/国家</th>
<th>主要挑战</th>
<th>地下水管理主要特点</th>
</tr>
</thead>
<tbody>
<tr>
<td>巴塞罗那/西班牙</td>
<td>地下含水层严重威胁</td>
<td>参与式含水层管理、出台水政策、地下水使用规范和规划水文地质界限、建立地下水用户协会</td>
</tr>
<tr>
<td>安曼/约旦</td>
<td>地下水位下降、用户之间发生矛盾</td>
<td>确定水位公共财产并归政府管理、所有水井都有存档、强有力的凿井监控、向用户宣传国家的法规，一旦违法这些法规，将会没收钻井工具并逮捕相关人员。</td>
</tr>
<tr>
<td>曼谷/泰国</td>
<td>水质恶化和由于地下水过度开采而带来的地面沉降</td>
<td>控制工业凿井和取水收费；水费作为水资金用于监管、行动研究、能力建设和管理措施实施方面（取水证发放和用水收费）；把地下水管理措施作为客观独立的政府首要任务的成功定位；中央地下水“最高”管理机构与地方政府一道管理各类地下水资源；把地下水保护费转化为“地下水资金”用于监管和研究工作；在地下水补给脆弱区域实施严格的地下水污染控制。</td>
</tr>
</tbody>
</table>
动员主要水消耗用户参与进来也同等重要，这样他们就可以自己采取措施来更好地管理地下水。这些是印度尼西亚、墨西哥和希腊等国的经验。节水最终于所有人的利益都相关，并不只是政府的职责。在一些国家，甚至设立了专门的含水层用户管理机构。通常，在节水生产体系下，可以发展强有力的地方经济，这一点正如报告在第三章介绍的 0188-PRC 赠款项目那样：因为更为精确地、控制性用水模式可以节约成本，并能够提高产品或作物质量。

框2.2 举例说明了在印度农户积极参与地下水管理的情形。这个项目非常受人欢迎，因为通过农户水利学校，农户意识到节水最终可以得到回报，能够带来利润丰厚的农业。另外，通过农户水利学校，人们可以更好地理解现有的法律法规，使这些法律法规发挥更大的作用。

框2.2 组织农户参与地下水管理：印度安得拉邦经验

让农户参与到地下水管理之中也同等重要，因为这样他们就可以承担责任，并积极献计献策。在印度许多州，比如安得拉邦州（其人口达到九千万），地下水的使用在过去二十年里迅猛增长。据估测，单在安得拉邦州就有120万眼水井，在很多区域，地下水位下降明显。

为了应对这一地下水危机，在APFAMGS 项目中引入了许多活动，让农民参与进来，这样他们也开始对地下水管理负起责任来。

- 鼓励农民直接参与到水位监测和收集气象资料工作中去；
- 组织所有居住在子流域的农户讨论如何利用现有的水资源来规划种植；
- 设立 “农户水利学校”，开设培训课程，讨论节水高产作物种植方法。由于这些
活动的开展，原来存在地下水超采的区域状况都得到了扭转。

图2.2：印度农户“水利学校”——介绍历年水平衡状况

在所有地下水超采区，由于这些活动的开展，目前形式有所好转，原来高水耗作物（尤其是水稻）的种植被现在中低水耗作物种植替代，另外人们适应高效节水措施和灌溉技术的步伐也有所加快。

2.2.3 管理措施

山西省在地下水管理方面相继采取了一系列重要管理措施。这些措施需要系统实施，并补充相应的规划工作和活动安排。山西省目前采取了以下五项主要管理措施：

- 控制地下水水源地开采总量
- 建设项目水资源论证制度
- 凿井审批制度
- 取水管理
- 地下水资源使用征费
2.2.3.1 地下水总量控制制度

水利部提出实行最严格水资源管理三条“红线”中的第一条就是实行水资源总量控制红线。根据山西省以及各市第二次水资源调查评价成果和水资源综合规划成果，要对全省各市地下水开采总量指标进行细化，确定不同水平年的地下水开采控制指标。这项工作正在进行中，由于涉及到各市区的经济利益，需要相互协调。目前，对各岩溶大泉的岩溶水开采控制指标（按来水保证率90%）已经细化并已实施，比如娘子关泉涉及阳泉和晋中，晋中市娘子关泉岩溶水开采控制指标为1600万m³/a，剩余为阳泉市（泉水出流地）；郭庄泉涉及吕梁、晋中和临汾，吕梁市郭庄泉岩溶水开采控制指标为3740万m³/a，晋中市郭庄泉岩溶水开采控制指标为1800万m³/a，剩余为临汾市（泉水出流地）。(潘军峰等 2008)在一些地区甚至应该像太原市那样引地表水，完全禁止地下水开发，并关停水井。

2.2.3.2 建设项目水资源论证制度

自2002年水利部、国家计委第15号令《建设项目水资源论证管理办法》以来，山西省从实际出发，制定了建设项目水资源论证制度，颁布了《山西省建设项目水资源管理办法》，并认真组织实施，积极采取措施，加强了水资源论证与审查工作。基本上对所有的新建、扩建等大型建设项目的水资源论证报告进行了全面技术审查，保障了建设项目的用水安全。

通过对建设项目进行水资源论证，一是促进了企业自身节水工作的开展。在论证过程中，要求建设项目采用先进工艺和技术，提高用水效率，促进节约用水工作，使有限的水资源发挥更大效益。所有新建电厂为了节水，采用空冷发电机组，大大的降低了用水量；二是促进了水资源的统一调配。在一些缺水地区，建设项目采用中水、矿坑水等非传统水资源，实现分质供水、控制地下水开采量，做到优水优用，提高水资源的利用效率。三是可以改善城镇居民的用水状况。随着城镇人口的不断增长，人民生活水平的不断提高，水资源的供需矛盾更加突出。四是保障建设项目的用水安全。通过对水资源条件、建设项目的用水和退水、周边环境的影响等进行全面论证，减少了废污水的排放，有效地保护了地下水和水环境状况。

2.2.3.3 凿井审批制度

凿井是开采地下水的主要手段，完善凿井审批制度对控制地下水开采有着重要的作用。
为加强地下水的开发利用和保护管理，各级水利部门把规范地下水勘探凿井秩序，合理开发利用有限的地下水资源，作为地下水资源保护管理的源头工作来抓，各市在凿井市场管理中抓了以下几方面的工作：

- 制定地方行政管理办法，规范凿井管理。如吕梁市和晋中市分别于1999年、2000年以政府名义颁布了《吕梁地区地下水勘探凿井管理办法》、《晋中地区凿井管理暂行办法》等。运城市盐湖区于2000年颁布了《运城市盐湖区凿井管理办法》。
- 狠抓凿井队伍的素质教育。一方面提高井队管理人员的依法打井、遵章守法的素质；另一方面，对井队技术人员进行技术培训，以提高打井的技术水平。更重要的是保证了地下水资源开发管理秩序化。
- 严格井队的资质管理。各井队必须经过培训、考试、考核、审核领取凿井资格证，才能进行凿井施工活动。
- 加强凿井市场审批制度。做到申报步骤化、程序化，严格按照《取水申请审批程序规定》的要求去管理，在没有取得取水许可预申请的任何单位和个人不得开始凿井，同时根据水井深度划分审批权限。

2.2.3.4 取水许可管理制度

取水许可制度是水资源权属管理的核心。在实施取水许可制度过程中，坚持优先保证城乡居民生活用水，统筹兼顾农业工业和其他用水户的原则，切实加强统一规划和宏观调配；坚持控制地下水开采，鼓励使用地表水和其他非传统水源；对地下水实行总量控制的原则。经省政府批准，全省已划定地下水超采区和严重超采区22个，划定泉域重点保护区31处，对超采区和泉域重点保护区实行了严格限制取水的措施。有的地区还对取水量进行了压缩。有效地减缓了地下水的超采状况，取得了显著的社会经济
2.2 取水许可证

2.2.3.5 水资源有偿使用制度

水资源有偿使用制度的建立有效地缓解了山西省水资源紧缺的矛盾。山西省从 1982 年由省政府颁发文件规定开始征收水资源费（具体征收范围和标准是由省财政、物价和农民负担监督管理办公室联合核定的）。到今天已有 30 年的征收历史，先后对水资源费征收标准进行了 3 次调整，由最初地下水征收标准为 0.1 元/m³，到目前 2 元/m³（地下水超采区征收标准为 3 元/m³）。具体征收标准及范围见表 2-2。

水资源费的征收对控制地下水开采起到了一定的作用，有效促进节约用水和计量监测。在山西省的带动下，全国其它省、市、区先后对水资源费的征收管理作出了省级规定，开始征收水资源费，但征收的标准不一致。到目前全国已有 25 个省（区、市）对水资源费的征收管理作出了省级规定。水资源费的征收管理和用水配额体系的建立同时也是清徐县成功管理地下水的核心内容，在清徐农户以取水刷卡的方式来使用井水，每一户的用水量都有记录，以便与他们所分配的配额做比较。清徐县水管理体系对减少地下水的使用发挥了巨大作用，使原来地下水过度使用的状况转变为地下水的可持续消费。

2.2.4 先进做法：清徐县统一地下水管理体系

清徐县有耕地 43.6 万亩，可灌溉面积为 36.8 万亩，而其中 17 万的灌溉面积都是依赖地下水实现的（牛保东 2013）。由于经济和农业发展，清徐县年平均水短缺量为 5727 万 m³。和省内其他地方一样，清徐降雨量也逐年下降。另外，来自汾河和潇河的客水流量也正在减少，与 1950 年相比，客水流量下降了约 25%。
从 2005 年到 2010 年，清徐县地下水位每年下降 1.6 米（李福田，2011）。考虑到地下水资源对全县经济发展的重要性，为了避免地下水的过度开采，清徐县建立了一套完善的水资源分配、管理、评估和地下水监测机制（Li He 2011）。

清徐县地下水管理体系于 2007 年投入使用，该体系为全县 1473 眼水井都安装了自动操作系统，这样农户就可以刷卡取水。每个农户可以使用的水量是基于他们每年获得的配额基础上的。

用水配额首先在各行业之间分配（工业、农业、生活和环保），其次在全县 197 个乡村之间分配，最后在各村农户之间分配。根据可持续地下水资源的多少，每个地区的配额都不尽相同。对每个家庭的配额分配是基于该家庭土地多少、人口大小和家畜多少的。配额范围内用水价格是每个单位 0.41 元（0.05 欧元），超过配额的用水价格是 0.55 元。用水价格单位与用电价格单位相关。由于不同水井深浅各不相同，一
个单位的水量可能是 500 升到 5000 升之间的任何一个值。

水费用来支付用泵抽水而消耗的电费、灌溉管理人员工资以及灌溉设施的维护费用。超配额水费用来支付所欠水费、工资，其中 50% 用来支付维修费用。水费结余用来开发新的水资源（Li He 2011）。

当我们对比水费和种植费以及潜在收益时，会发现水费其实是相当高的。这表明价格信号在这里是有效的。在西怀远村，每亩地的灌溉水费达到 73 元（水量消耗为 240 m³）。根据 2008 年国家统计数据，种植小麦每亩的费用是 274 元，而每亩净收益仅为 296 元；种植玉米每亩的费用是 232 元，而净收益是每亩 423 元（Li He 2011）。

各村各农户之间还可以买卖用水配额，但交易价格有上限（以不超过基本价格两倍为限）。对于农户而言，家庭成员和邻里之间共享“多余水额”的做法较为普遍，而买卖配额的现象较少。一般情况下，每个农户分配到配额还是相当紧张的。根据配额管理条例，任何剩余的额度都可以留到来年使用；这样即使某个农户没有用完本年度的配额，他也会保留它以供来年使用。这表明农户们对用水配额和用水价格还是相当重视的。

农户刷卡取水交易信息通过互联网传递到县水利局数字水资源信息中心。信息中心依据每个农户的刷卡交易信息，精确地计算记录该农户用水的单位数。每个农户还可以从不同水井取水。如果水卡丢失，可以申请补办。信息中心的记录一般保存几年时间。此外，信息中心还与 60 个太阳能供电观测水井相连，这些水井不断地把地下水位信息传递给中心。

图 2.6：清徐水资源信息管理中心

管理效果是相当可嘉的。尽管有严格的用水限制，70%的农户仍然认为新的管理
体系不错，实际上大部分农户认为相当不错。由于水卡必须提前充值，其成本回收为100%。其实最重要的还是通过采取新的管理措施，给地下水带来的影响。在该管理体系安装使用之前（成本为3000万人民币（合375万欧元或者每公顷251欧元），清徐县内的地下水位严重下降，这种状况随着新的管理体系的使用发生了改变，地下水位开始以每年1.6米到4.8米的速度上升。同时地下水的消费量也在逐步下降，从2004年的5900万立方米降低到五年后的3000万立方米，下降了40%。新的管理体系鼓励农户调整种植做法（Li He 2011）：更充分的田地准备工作（81%），塑料薄膜的使用（61%），作物品种的选取（49%）。得益于政府部门的广告宣传，农户对化肥和农药污染危险的意识也有所增强。最终，项目的实施提高了用水效率和用水收益，促进了水资源的可持续利用。水资源不断恶化的供需矛盾得到缓和，而水资源环境也从持续恶化趋势中恢复过来（李福田，2011）。

集义村1993-2012年地下水位

图 2.7 太原盆地清徐集义村旺地下水水位动态

清徐县通过分层次征收水费和高效刷卡式管理措施为创建“节水型社会”树立了榜样。清徐模式为农户投入高效水资源管理提供了平台，并最终在这一粮食主产区实现大幅度节约用水；这一模式对于像清徐这样缺乏如此规模和高效率政府管理的区域而言，显得尤为必要，值得我们大力支持。由于该体系规模大，需要及时到位的先期准备工作（比如与所有股东的详细探讨论证）和大量资金投入（建设新的基础设施），有必要邀请政府和国际金融机构参与投资管理模式的建设。像清徐县这样的管理很有必要，因为如果没有这样的管理体系，实施高效灌溉就会面临灌溉面积膨胀的危险；而有了这样的管理体系，水的利用率就会提高。
2.2.5 水资源总量控制制度扩展和完善

山西省实施了水资源总量控制制度（第2.2.3.1节）。这一制度如上文所述已经在一些地区实施了，比如清徐和太原。基于山西省的已有的经验，还需要进一步扩展和完善水配额制度。在此可以借鉴澳大利亚的成功经验（框2.3）。

框2.3：澳大利亚水资源分配制度
主要内容
- 全国统一取水许可制度 – 取水许可证和配额
- 公开的水资源方案
- 包括环境用水条款的水资源方案
- 富余分配水重新返回可持续开采水源地制度
- 去除地下水许可证和配额的交易障碍
- 水计量 – 通过水表和远程传感器
- 全国水资源委员会每10年审查一次各州的行动落实情况。

目前山西省在水资源管理方面，建立用水总量控制制度，下一步应积极完善实施，科学确定各区域地表水可利用量、地下水可开采量及区域外调入水量（引黄水量），在此基础上，分别拟定区域（市、县）地表水、地下水及外调入水量控制指标，建立规划期用水总量控制指标与年度用水总量控制指标相结合的制度；建立鼓励、引导节约用水以及开发利用非常规水资源（再生水、矿坑水等）的机制，这一点已在本章其他小节详细讨论了。
总量控制包括四个层次:

- **行业用水总量控制。**是指在每个区域中地表水、地下水和外流域调水用水指标。根据不同时期，本地区的供水水系的建设情况，下达不同行业的用水指标。目前，山西省到2015年用水指标为76.4亿m³，到2020年用水指标为93亿m³，到2030年用水指标为99亿m³。

- **区域用水总量控制。**根据各地水资源条件和经济社会发展状况，分别确定省、市和县行政区的用水指标，并作为水资源管理考核指标。

- **各村水权分配。**在对全县可控水资源的数量、类型和时空分布进行全面分析评价的基础上，以可控资源量为基数进行水权的初始分配。

- **水权在各村单位取水工程之间分配。**这些单位工程可以是工厂、农场、个人家庭用水也可能是环保用水。

这样，依据清徐模式就形成了一个水权四级分配方案，具体见图2.7。这一分配体制还应该配套水市场机制，来交易过剩水配额。这些做法可以刺激人们高效用水。清徐县在实施总量控制制度上走在山西省甚至全国之前。清徐模式整合了水配额分配制度、水井取水自动化管理、取水刷卡管理以潜在的水交易制度等。
图 2.9 清徐县水资源总量控制图
表 2-2 山西省水资源费征收标准

<table>
<thead>
<tr>
<th>取水水源</th>
<th>取水类型</th>
<th>取水用途</th>
<th>收费标准（元/立方米）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>非超采区</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>定额内用水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>不足 20%</td>
</tr>
<tr>
<td>地下水</td>
<td>自备水源</td>
<td>特种用水</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>一般用途取用水</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>城镇公共供水和水利工程供水</td>
<td>特种用水</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>工业、商业、经营服务业用水</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>行政事业用水</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>采矿排水</td>
<td>矿井开采（按排水量）</td>
<td></td>
</tr>
<tr>
<td>地表水</td>
<td>自备水源</td>
<td>特种用水</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>城镇公共供水和水利工程供水</td>
<td>特种用水</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>工业、商业、经营服务业用水</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>行政事业用水</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>火力发电贯流式冷却用水（元/千瓦时）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水力发电用水（元/千瓦时）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.6 另一种措施：通过经济和土地使用规划来管理地下水

除了目前现有的水资源管理法规条例外，未来我们还必须把山西省经济活动规划与地下水资源存有状况挂钩，尤其对那些地下水短缺和过度开采的地区而言。最终，高水耗或污染严重的工业企业将会被淘汰，或迁移到水资源相对富裕地区。其次，需要进行经济结构调整，使整个经济朝着多样化、可循环、低碳方向发展。

2.2.6.1 经济和土地使用规划

首先，主要经济活动的地理位置分布必须均衡。经济社会发展要充分考虑地下水资源条件，统筹安排国民经济各部门、各行业用水，协调生态环境用水。坚持把维护生态环境安全放在地下水资源开发利用的重要位置，尊重自然规律和经济规律。经济社会发展要与当地地下水资源承载能力相协调，在水资源短缺和供需矛盾突出的流域和地区，把投入产出效益作为水资源合理开发利用的评判准则，严格限制高消耗低产出、高耗水重污染的建设项目。适时调整经济建设布局和结构调整，合理调配地下水、地表水及非传统水源，优化水资源配置方案。

山西省是一个水资源十分短缺的省份，水资源的分布不均匀。而经济社会布局主要分布在相对交通便利的腹部地带，在这些地区形成了大面积的漏斗区（见图 2.1）。从中长时期来看，必须在地理上重新布置经济活动。在山西省转型跨越发展的关键时期，要严格控制腹部盆地发展规模和新建工业企业，城市和工业的布局逐步应向东西两翼发展，既减轻腹部盆地的水资源供需矛盾和供水负担，又充分开发利用东西两翼相对富裕的水资源，同时也平衡山西社会经济发展的地区性差异，扶持贫困地区重要举措。本报告在第三章具体介绍了 0188 项目，并列出了几个在贫困地区发展高效高产经济活动的例子。

框 2.4 老工矿企业迁出太原

为了改善太原市环境，在太原市政府引导下，太原水泥厂、太原化肥厂等一批老工矿企业相继于 2011 年前整体搬离太原城区。

太原化肥厂是在解放初期由前苏联援建的全国 156 个重点项目之一，是新中国建成最
早，最大的中型氮肥企业，至今已有 53 年历史，已形成 24 万 t/a 合成氨、32 硝铵生产能力。由于设备运行多年，主体装置设备老化，是太原市的用水大户，环境污染大户。为此，与 2011 年 5 月，太原化肥厂全面停产，决定整体搬离太原市区，改善了太原市区环境和缓解了水资源供需矛盾。

2.2.6.2 经济结构调整

第二个要素是经济结构的调整。山西省是一个重化工能源基地。工业结构主要以煤炭、冶金、电力、化工为主，四大行业占到全省国民经济总收入的 70% 以上，四大行业用水量占到工业用水量 80% 以上。在山西实施经济转型升级和跨越发展的大好形势下，要立足发挥区域优势，瞄准新兴产业发展前沿和市场开拓前景，抓住国家大力扶持战略性新兴产业的历史性发展机遇，带动山西工业产业经济跨越式发展。

要以煤为基，大力发展装备制造业和煤化工产业。依托现有的煤炭装备制造、运输装备制造业科研、技术、制造工业的优势资源，提高煤机成套装备能力以及轨道交通设备、大型采掘装备等重要领域装备的制造水平。重点发展煤矿机械、铁路装备、重型机械、纺织机械、液压元件系统、汽车及零部件、新能源装备和节能环保装备等产业。依托山西省煤炭资源和煤层气资源储量丰富的特点，重点发展以煤制油、煤制烯烃、煤制天然气、煤制乙二醇等为主的新型煤化工产业。

在经济转型方面，要把低碳经济理念引入煤、焦、冶、电等传统产业，建设低碳能源工业基地。充分利用煤矸石、粉煤灰、冶炼废渣、工业废水、废气等工业“三废”，大力发展煤矸石发电清洁能源和煤矸石、粉煤灰、冶炼废渣生产新型建材产品等。淘汰落后产能，提高资源利用率，大力发展循环经济，大力推进节能减排，发展低碳、清洁能源。鼓励企业循环生产，推动产业循环组合，特别要瞄准焦炉煤气、煤气层气、高炉气、沼气和城市垃圾的综合利用，煤矸石开发利用，中水利用、煤炭开采矿井水回收利用等，建设循环工业园区，全方位推进循环经济的发展，做到环保政策与产业政策的衔接工作，实现产业发展与环境保护相互促进。
2.2.6.3 农业结构调整

农业用水是山西省的用水大户。农业用水占全省总用水量的 65%，农业用水中地下水开采量占全省地下水开采量 49%。因此，推广高效节水农业能够最大限度地利用自然雨水和灌溉用水是农业结构调整和控制用水量有效方法。

- 摒弃低单位水经济产值作物，推广高经济价值作物，建立相应增值市场价值链。
- 因地制宜，大力推广节水灌溉，如管灌、喷灌、滴灌、微灌、根灌等先进灌溉技术，做好节水灌溉设施的管理与维护。具体见 2.4 节中的论述。
- 推广耐旱作物，节约用水。如水稻等耗水量大的农作物。

2.3 农业用水管控

实施水权分配制度和其他管理措施，可以有效地减少山西省农业的需水量，尤其是中部盆地地下水漏斗区。控制和减少农业用水的必要性是显而易见的：农业灌溉仍然是山西省和世界上大多数地区最大的水消费者。虽然先进灌溉技术日新月异，但是普及覆盖率仍
不理想。目前，山西省95%的灌溉区域仍然使用传统低效的畦灌方式。在管理山西省地下
水需求时，解决农业水产值至关重要。

节水高效农业就是要充分有效地利用自然降水和灌溉水。也就是通过工程、农业、管
理等措施，最大限度地减少水源在输水、配水、灌水和作物消耗水过程中的损失，最大限
度提高单位耗水量的产量和产值。在山西省可推广的农业高效用水技术体系如下。高效水
管理不仅可以减少水使用，还可以实现作物高产、提高作物品质。本节主要讨论了在节水
和提高水产值方面的一些重要做法。

<table>
<thead>
<tr>
<th>工程措施</th>
<th>农艺措施</th>
<th>管理技术</th>
</tr>
</thead>
<tbody>
<tr>
<td>微喷灌溉</td>
<td>耕作保墒</td>
<td>节水型灌溉制度</td>
</tr>
<tr>
<td>微灌</td>
<td>覆盖保墒</td>
<td>土壤墒情监测</td>
</tr>
<tr>
<td>低压管道输水技术</td>
<td>土壤调节剂</td>
<td>灌溉监测</td>
</tr>
<tr>
<td>塑料薄膜</td>
<td>配方施肥和水肥耦合技术</td>
<td></td>
</tr>
<tr>
<td>渠道防渗技术</td>
<td>抗旱品种</td>
<td></td>
</tr>
<tr>
<td>地面灌溉节水技术</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2.3 农业高效节水措施

2.3.1 工程节水技术

在提高水产值上，可以采用几种工程措施，主要包括微喷系统、微灌、低压输水管道（对使用地下水灌溉尤为重要），这些工程措施通常与塑料薄膜配合使用。在地表水灌溉中，渠道防渗和其他地面灌溉节水技术（包括使用塑料薄膜）都十分重要。

(1) 喷灌技术

喷灌是利用专门设备将有压水送到灌溉地段，并喷射到空中散成细小的水滴，像天然降雨一样进行灌溉。其突出优点是对地形的适应性强，机械化程度高，灌水均匀度高，灌溉水利用系数高，并可调节空气湿度和温度，尤其适合于透水性强的土壤和坡地的灌溉。喷灌与传统地面灌溉相比，可节水30%～50%，增产10%～30%，所以喷灌已成为世界范围内
农高效用水的主要技术。喷灌技术的研究已趋于成熟，但随着科学技术的进一步发展，喷灌技术的完善势在必行，特别是喷灌设备的系统化、集成化、产业化、现代化以及低成本化。在山西省种植结构程度较高地区或对于经济价值较高的作物应该优先推广和应用。

图2.11喷灌系统示意图

（2）微灌技术

微灌技术包括滴灌、微喷和涌泉灌技术，由于属于局部灌溉技术，与传统地面灌溉技术相比，可节水60%，是所有灌水技术中灌溉水利用率和利用效率最高的灌水技术。

滴灌：滴灌是利用一套塑料管道系统将水直接输送到每棵作物根部，水由每个滴头直接滴在根部的地表，然后渗入土壤并浸润作物根系最发达的区域。其突出优点是非常省水，自动化程度高，可以使土壤湿度始终保持在最优状态。滴灌属于局部灌溉和全管道输水，能够根据作物的需要精确地进行输水，因此可使水分的渗漏和损失降低到最低程度，从而使水的利用率大大提高。一般来说，滴灌比地面灌省水35%～55%（有些作物可达85%左右），比喷灌省水15%～25%。灌溉时，还可以结合施肥，即把化肥溶解后注入灌溉系统，使肥料养分均匀地施到作物根系层，能够真正实现水肥同步；又因是小范围局部控制，水肥渗漏较少，故可大大提高肥料的有效利用率，节省化肥施用量，减轻污染。灌溉施肥技术的运用，不仅为作物及时补充价格昂贵的微量元素提供了方便，而且能够节省劳力投入，省工省时。又因滴灌为作物株间提供了充足的水分，因此杂草不易生长，从而可减少除草的用工。但需要大量塑料管，投资较高，滴头易堵塞。在山西省可在设施蔬菜、林果区大力推广应用。
微喷：微喷又称为微型喷灌，是用很小的喷头（微喷头）将水喷洒在土壤表面。微喷头的工作压力与滴头差不多，但是它是在空中消散水流的能量。由于同时湿润的面积大一些，这样流量可以大一些，喷洒的孔口也可以大一些，出流量速比滴头大得多，所以堵塞的可能性大大减小了。在山西省经济价值较高的大田种植区、水资源极度短缺和没有地面灌溉条件地区应大力推广应用。

涌泉灌：简称涌灌。它是通过安装在毛管上的涌水器（稳流器）形成的小股水流，以涌泉方式使水流入土壤的一种先进的节水灌溉技术，它和滴灌、微喷统属微灌范畴，是在滴灌的基础上发展起来的。由于滴灌对水质的要求较高，滴头孔眼小，易堵塞，因此，人们考虑用大孔径的涌水器来代替小孔径的滴头，灌水形状似水柱向外涌，形成了涌泉灌。对于林果涌泉灌将具有成本低、效益高等特点，应在林果地区大规模推广应用。
微灌系统成本较高，是经济价值较高的蔬菜、果树和严重缺水的山丘区农业高效用水集成技术的主要构成。坡地微灌技术、微灌设备的系统化、集成化、产业化、现代化以及低成本化等都是急待解决的问题。

（3）低压管道输水技术

低压管道输水技术可以认为是地下水灌区灌溉水利用率提高技术的一次革命，使井灌区灌溉水利用率有了较大幅度的提高。低压管道输水技术在我国北方地区有了较大的发展。该技术尽管已比较成熟，但诸如低压管道输水管道、联接件及其配套设备的进一步研制、产品的产业化等问题都有待研究。

（4）膜下滴灌技术

膜下滴灌是覆膜种植与滴灌相结合的一种灌水技术。它根据作物生长发育的需要，
把水通过位于膜下的滴灌系统向有限的土壤空间供给，属于局部灌溉。也可同时将化肥等
随水滴到入作物根系附近。与传统地表灌溉、喷灌等技术相比，优点是多方面的。由于膜
下滴灌的配水设施埋设在地面以下，管材不易老化，灌水时土壤表面几乎没有蒸发，又避
免了水的深层渗漏和地表径流，使作物对水、肥的利用直接有效、便于农户田间管理和精
确控制灌水量，达到高效农业用水的目的。

膜下滴灌与大水漫灌相比，亩增产20%以上，节水40%—50%，化肥、农药利用率
提高20%，节约生产成本（节肥、节药、节劳）50元，土地利用率提高8%。膜下滴灌改变
了传统的农业用水方式，与覆膜栽培和机械化作业相结合，不仅节水，而且增产增收，改
善了农民的生产条件，降低了农业生产成本，是一项利国利民的科技措施。水利部最近计
划在山西省北部地区推广20万公顷土地高效塑料薄膜覆盖滴灌工程。

图2.16 塑料薄膜覆盖示意图
(5) 渠道防渗技术

以上工程措施对于使用地下水灌溉较为适用，而在使用地表水灌溉上仍然可以采取另外一些工程技术。

渠道防渗是减少灌溉水损失的有效措施之一。渠道防渗种可以使用各种不同渠道衬料，从土工织物到混凝土衬砌。高防渗成本、管理的复杂性以及冰雪消融破坏是推广渠道防渗措施的主要障碍。我们还需要进一步研究解决以下问题：低成本的非渗透性物质的应用、渠道及时维护、冰雪消融破坏防范、以及其他经济可行的防渗措施的实施等。

![图 2.17渠道防渗系统示意图](image)

(6) 地表灌溉节水技术

目前山西省有95%以上的灌溉区仍在使用传统的畦灌技术。然而使用这些灌溉技术，灌溉水将会在两个方面流失：一是在配水系统中；二是在农田灌溉网络中。在过去的十年中，在国家水利部的领导下，全国各地水利部门都对其大中型灌溉区进行了节水改革。主要包括对主要渠道和支渠的改造，通过改造输水线路水损失大幅下降，渠道水利用因素大大提高。随着大中型灌溉区项目的继续实施，渠道水利用因素将会继续提升。因此，降低田间灌溉过程中的水损失将是未来中国节水的一项重要任务。

据调查，山西省大部分农田自流灌溉区灌溉水有效利用系数仅为60%到70%，或者更低。这与灌溉排水工程设计规范订立的90%的标准存在较大差距。笔者二十多年来的研究表明：采用合理的灌水技术参数进行灌水，将田间灌溉网灌溉水有效利用系数提高10～20%是完
全可能的。地面灌溉技术研究的主要方面有：激光平地机的研制与应用；合理垛、沟规格及优化灌溉技术参数；平垛灌、隔垛灌、闸管灌溉等先进灌溉技术。

2.3.2 农艺节水技术

农艺节水与工程节水相辅相成，缺一不可。工程节水是农业高效用水技术集成的骨干技术，但农艺节水在农业高效用水集成技术中也占相当重要地位。

图 2.18 农艺技术示意图

农艺节水不同于工程节水。工程节水在于减少输水、配水和灌水过程中的水分渗漏和地面流失。从水资源总量平衡上分析，大部分渗漏和流失的水量在不同时间和不同地点，都还可被重复利用，并非真正的损失。而农艺节水技术可以减少农田水分蒸腾、蒸发损耗并提高农作物产量，所以农艺节水是真实意义上的节约水资源节约。

农艺节水技术包括调整作物种植结构，选用节水高产品种，加强耕作覆盖、培肥施肥和化控，努力减小田间耗水，增加作物产量，不断提高农业用水效率。水利和农艺技术结合可以更好地提高用水效率。目前所采用的农艺节水技术主要有：

- 耕作技艺提高
- 薄膜覆盖
- 使用土壤调节剂
- 抗旱作物品种
（1）耕作保墒技术

采用深耕松土，镇压、耙磨保墒，中耕除草，增施有机肥，改良土壤结构等耕作方法，可以疏松土壤，增大活土层，增强雨水入渗速度和入渗量，减少径流流失；切断毛细管，减少土壤水分蒸发，保持土壤墒情是一项行之有效的节水技术措施。

通过耕作保墒技术还可以提高旱作作物的收成（见下框2.5）。

框 2.5 通过艺机一体化来节水保墒

山西农科院旱作研究中心做了一项突破性研究。目前争论的主要焦点是多数增加旱地保墒能力的措施比较费时费工。依靠传统做法，比如覆盖、耙、耱等，可以提高“绿水”的产值，但实施起来却很费力，随着农业人口老龄化，传统方法不再可行。然而，在传统手工耕作做法之外，还有一些更好的方法可以提高旱地单位水消耗产值。以小麦种植为例，为了最大限度地利用有限的水资源，可以采取起 12-14 厘米高、30 厘米宽的垄，一膜四行的密集种植方法（见下图）。密集种植的小麦叶片形成一张密不透风的绿叶毯，从而降低土壤水分蒸发。用塑料薄膜覆盖的垄又可以收集田地的雨水，减少水分流失。与一膜两行相比，一膜四行种植方法，小麦产量可以提高 15%，与传统方法相比，增产幅度则更大。

要实现这一耕作技术，需要大量劳动力投入，并需要精确实施，如果没有专门机械设备，一般较难实施这一技术。

另外一个例子是多功能玉米播种机，该机器可以同时补水、起垄、覆膜、施肥和精播。在播种过程中，这个安装在拖拉机上的播种机一次完成了抗旱、增产等几项农艺措施：
• 补水抗旱，水来自玉米播种机上随带的一个水箱；
• 覆膜保墒增温
• 垄膜沟植微集水技术
（2） 覆盖保墒技术

在耕地表面覆盖地膜、秸秆等材料可以抑制土壤水分蒸发，减少降雨地表径流，起到蓄水保墒，提高水的利用率，促使作物增产的效果。此外，还有提高地温、培肥地力、改良土壤物理形状的作用。

图 2.23 薄膜干草覆盖保墒技术示意图

（3） 土壤调节剂

水分保持剂、作物蒸发剂、土壤调节剂等构成第三类农艺节水措施。通过这些措施的实施，土壤的抗旱能力增强，从而达到节水和增产的目的。水分保持剂是一个大分子化合物，可以吸收其本身重量400到1000倍的水分。85%的水分为作物自由水。使用这些土壤调节剂，作物产量可以提高8%到20%。所有这些措施都可以提高土壤的保水能力，减少作物水分蒸发流失。

对山西省而言，一个极具前途的产品是沸石。沸石是一种火山喷发积岩，沸石在山西省的储量较高（详见第2.5.4）。
框 2.6 生物肥料

生物肥料的制作是用取自新鲜粪便或牛胃的酶来催化分解有机废物、木灰木炭、糖等。制作过程必须使用新鲜的、没有被污染的、非回收处理水（比如雨水）。如果在其中加入岩石粉末，其风化过程会加速，最终制作的生物肥料也会富含矿物质。生物肥料的重要优点是它能够构建更好的土壤，而不只是在土壤里加入短期营养物。与常规肥料相比，生物肥料成本更低，生物肥料的制作可以变废为宝。在山西省，山西凯盛肥业有限公司在生物肥料和其他生物修复剂的研发生产上可谓是先驱。

(4) 配方施肥和水肥耦合技术

水肥耦合是根据土壤养分和营养的含量、供给速度、作物对养分和营养需求量和需求速度拟定施肥制度，达到与作物水分供给相结合，达到节水、节肥、高产高效的目的。在配方施肥和水肥耦合技术方面，还有大量的技术问题需要解决。
培育和优选抗旱品种

节水高产品种的培育是提高作物产量的重要途径，培育抗旱增产品种是现代作物育种的一个新方向，也是提高农业用水效率的不可缺的举措。目前已经初步完成了小麦、水稻、玉米等作物品种染色体基因图的绘制，使人类按照自己的意愿实现作物基因的重组成为可能。一些品种没有将抗旱和增产有效地结合起来，出现了抗旱不增产或者增产不抗旱的情况。所以，开发培育节水高产品种，还有一段相当长的路。

管理节水技术

用科学方法进行用水管理，也可挖掘很大的节水潜力。只有在重视工程节水技术、农艺节水技术、生物节水技术、合理开发利用水资源技术的同时重视和加强管理节水，才能收到事半功倍的效果。主要的管理节水技术在以下几个方面：

(1) 节水型灌溉制度

节水灌溉制度是农业高效用水的基础，即针对农作物的生理特点，通过灌溉和农艺措施调节土壤水分，对农作物的生长发育实施促、控结合以获得最高产量。各种农作物不同发育阶段对水分的需求有差异。例如过去我国北方小麦要灌水5～7次，现在仅灌2～3次，
产量不仅没有减少，反而显著增加。同样，通过优化灌溉，其他作物的产量也大幅增加，比如水稻（见框2.5）。

框2.7 优化灌溉农艺：SRI

近几年来，一些地区响应一项名称为SRI（水稻增强栽培体系）的全球性行动，通过应用“干湿交替”方法，在水稻种植上实现了高产和节水的双重目的。通过提前移栽，不让稻田持续被水淹没，水稻的根系得以更好的发育。通过这一做法，水稻的需水量减少，产量提高。

作物调亏灌溉是国际上20世纪70年代中期在传统灌溉原理与方法的基础上提出的一种新的灌溉方式。它根据作物的遗传和生物学特性，在生育期内的某些阶段，人为地施加一定程度的水分胁迫（亏缺），调整其光合产物向不同组织器官的分配，调控作物地上和地下部分生长动态，促进生殖生长，控制营养生长，从而提高经济产量，达到节水、高产、优质的目的。
（2）土壤墒情监测与灌水预报技术

用先进的科学技术手段配合天气预报，预报适宜的灌水时间、灌水量，做到适时、适量灌溉，有效地控制土壤水分含量，得到既节水又增产的目的。该技术在我国尚处于研究和试点阶段，无论是监测设备还是数据传输、转换技术，还是控制技术都有待深入研究。

图2.27 灌水预报系统示意图

（3）灌区输配水系统的量水、配水与自动监测技术

真正实现优化配水、合理调度、高效用水还必须及时准确地掌握灌区水情。这是实施节水灌溉的基础技术工程。该技术在设备、数据采集、计算机处理以及自动化方面都有待研究。

图2.28 量水配水系统示意图
（4）农业高效用水集成技术研究和推广

目前，依靠单一技术实现节水或许得不到理想的效果。要把工程节水技术、农艺节水技术和管理节水技术集成为成套的节水技术，方可取得理想的效果。因此，研究和推行适合不同地区、不同自然条件和社会经济条件的农业高效用水集成技术，使广大群众了解和明确当地农业高效用水集成技术的构成，自觉实施当地农业高效集成技术。

这些措施的实施往往与一个地区地下水资源的有效调控管理有关。地方地下水管理部门对于推动水资源合理开发、利用、保护、配置等至关重要。地方政府负责协调各部门的水需求。除此之外，还应该采取经济刺激措施（见第2.7节）。农业节水措施的实施，如果能够与水权分配、水价订立、取水许可证机制、以及水权在水市场的交易等相结合，则会发挥更大的功效。

图2.29 水政策和水规定示例

农业节水依靠一系列互相关联的措施，包括政策和法规，还包括一系列高效节水措施的实施。另外，用水相关人员比如农户等的积极参与也很重要。通过教育、宣传、经济刺激以及其他一些有效方法，可以使广大农户积极参与到节水行动中去。报告第3章，举例说明在0188-PRC 赠款项目中，这些目标是如何实现的。
2.4 工业节水

作为第二大用水行业，工业节水也是山西省地下水管理中的一个重要部分。由中华人民共和国水利部与国家计委在2002年5月1日颁布的第15号令《建设项目水资源论证管理办法》是这一方面一个重要法规文件。在全世界范围内，人们目前普遍认为我们不应该只是预防环境破坏，而更应该积极应对，重视工业领域对水资源管理、节水和水处理方面的积极贡献（见框2.8）。在变废为宝方面，开发潜力很大，这同时也是循环经济的主要思想。

框2.8 公私联营节水案例

泰尔讷曾镇位于荷兰西南角，在这个镇里有一个特殊的公私合营共同管理水资源的实例。陶氏化学公司和当地一家水利公司合作，每天消耗7500立方米的处理废水，这些废水来自泰尔讷曾社区。在过去，陶氏设备制造蒸汽和工业流程用水主要来自脱盐水；而同时市政污水处理后，被排放到附近河口。目前，鉴于市政污水价格低廉，并且在矿物质去除上所需的能量比盐水少65%，陶氏公司开始转用市政处理污水，污水经过逆渗析法处理后，直接运输到陶氏工厂。这种合作给双方都带来好处，镇上的污水得到处理，陶氏公司可以用上价格低廉的工业水。另外，陶氏公司每磅产品的污水排放也减少了35%。

另外一个例子来自南非，这项工程由一个公私合营的实例，由英美资源集团必和必拓南非动力煤公司（BECSA）和威特班克地方市政府联合执行；这项工程被称为“世界级首创和模范发展先例”。2007年，英美资源集团和必和必拓一起完成了威特班克水回收厂（EWRP）的调试工作。这个水厂主要处理英美资源集团三个热能煤厂的排放污水，必和必
拓获得水厂的“使用权”来处理来自其旗下的南非威特班克煤矿的排放污水，但条件是它必须分担一部分水厂的运营成本。除此之外，英美资源集团还和威特班克市政府达成协议，铺设基础设施，把水厂处理水输送到地方政府的饮用水供应管道系统中。水厂的水回收率达到99%，它的最终目的是通过100%的利用其副产品，成为一个零浪费水厂。威特班克水回收厂目前每天处理大约3000万升水，提供安全可靠的水资源保障。水厂处理水一部分直接用于英美资源集团煤矿生产，但大部分用于社会用水，可以满足威特班克12%的日用水需求。截止2011年底，水厂已处理300亿升煤矿污染水，其中220亿升供给威特班克市区。

2.4.1 总体政策导向

以下是工业节水方面的一些重要政策措施：

- 加快淘汰落后高用水工艺、设备和产品。对现有企业达不到取水指标要求的落后产能，要进一步加大淘汰力度。

- 大力推广节水工艺技术和设备。围绕城市与工业节水重点，组织研究开发节水工艺技术和设备，重点推广工业用水重复利用、高效冷却、热力和工艺系统节水、洗涤节水、工业给水和废水处理、非常规水资源利用等通用节水技术和生产工艺。

- 切实加强重点行业取水定额管理。严格执行国家和山西省用水定额标准，对不符合标准要求的企业，限期整改。

- 严格控制新上高用水工业项目。尤其是水资源紧缺、供需矛盾突出的逐步盆地区，要根据水资源条件，合理调整产业结构和工业布局，优化配置水资源。（见第2.2.5节讨论）。
积极推进企业水资源循环利用和工业废水处理回用。采用高效、安全、可靠的水处理技术工艺，大力提高水循环利用率，降低单位产品取水量。在此方面，太钢集团取得了明显的成就，单位产品取水量降低为原来的5%（见框2.9）。加强废水综合处理，实现废水资源化，减少水循环系统的废水排放量。尤其是工业园区、经济技术开发区、高新技术开发区采取统一供水、废水集中治理模式，实施专业化运营，实现水资源梯级优化利用。

框2.9 太钢中水处理系统
太原钢铁集团公司的工业节水，全线实施节水工艺及技术改造，大力推进污水处理资源化进程，建设了反渗透处理、分质供水和排水管网系统、生活污水回用、中水深度处理四大污
水处理工程，吨钢耗水由原来的21.05立方降为1.28立方，工业水重复利用率达到97.96%，不仅提高了水资源的使用效率，而且走出一条处理污水、变废为宝、分质利用、节水减污的新路子。

- 加强矿井水、雨水、再生水、微咸水等非常规水资源的开发利用。目前，在世界不同地区，大型工矿企业普遍都通过在其厂矿周边开发集水系统来稳定其供水体系，从而实现“独立用水”。污水处理回用是工业和城市生活节水的一个重要方面，本着“优水优用”的宗旨，根据不同用途，按质用水，合理调配使用各种水源，在地下水严重超采的城市尤其重要。地表水（包括引黄水）应主要用于工业生产，优质地下水主要用于对人身体健康影响较大的城市生活用水，经处理达标的污水回用于工业生产、城市景观绿化和农业灌溉等方面。

- 在世界其他地方，订立水价、排污收费和财政刺激措施都是有效的需求管理工具；通过这些管理工具的实施，可以提高水质量，更好管理工业领域的水资源利用，可以给工业领域、全社会和生态环境带来以下几方面的益处：首先，随着城市供水的边际成本不断升高，节水可以大幅度降低全社会的用水成本；其次，节水和水循环利用可以节约80%以上的工业用水；最后，节水和水循环利用可以减少液体污染物排放量，从而改善河水质（Bathia et al. 1994）。

图2.32 工业计量设施
我们可以系统地了解一下国际先进做法：

(1) 通过定期审计来确定各行业实际用水量

(2) 对比实际用水量和行业用水标准（如果有的话），并公布对比数据

(3) 学习其他行业成功节水经验（见表2.1）

(4) 系统调查以下操作方法的可行性

- 降低水流
- 改进设备或安装节水装置
- 使用高效节水设备，淘汰当前设备
- 水处理，水循环和水再利用
- 向无水工艺转变

(5) 给员工讲解节约用水的重要性

- 节水意识的提高后，员工会参与到用水监督工作中去。

(6) 工业流程使用非饮用水：

- 在工业领域，节水措施可以有多重效益，包括降低饮用水和废水的成本、降低废水预处理成本、降低能源造价、降低化工原料费用，提高化工原料和金属的回收率，以及降低污染物的排放。以下是在某些特定行业多功能水利用措施的实例介绍。

表2.3 不同商业类型节水措施的成功经验

<table>
<thead>
<tr>
<th>办公楼</th>
<th>金属抛光工业</th>
<th>饮料生产厂</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用高效节水设备，包括卫生间</td>
<td>逆流清洗的管道设施配套</td>
<td>为程序控制提供充足计量设备</td>
</tr>
<tr>
<td>避免使用自动定时冲洗系统</td>
<td>清洗池使用传导控制器</td>
<td>轻松清洗设备设计</td>
</tr>
<tr>
<td>使用自动关停洗手水龙头</td>
<td>在所有水管安装自动关停阀门</td>
<td>清洗和运输上充分利用干洗方法</td>
</tr>
<tr>
<td>使用能源高效制冷系统</td>
<td>烟雾洗涤塔使用循环水或废水作为补充</td>
<td>应用产品和副产品回收体系</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>使用闭路循环供热系统</td>
<td>改进清洗池设计</td>
<td>考虑所有可能的水回收、循环利用方法以及供水取代办法，比如过滤和膜分离工艺，回收空调和制冷系统冷凝水排水等。</td>
</tr>
<tr>
<td>安装风冷制冰器</td>
<td>混合或充气搅动池内物质</td>
<td>最小用水或无水工艺设计</td>
</tr>
<tr>
<td>只在必要时使用水处理设备</td>
<td>使用多重减阻方法</td>
<td>流程控制精确水计量</td>
</tr>
<tr>
<td>安装自动关停螺线管阀门</td>
<td>在需要处使用过滤和水处理设备</td>
<td></td>
</tr>
<tr>
<td>在固定浴缸和洗脸池上安装水龙头</td>
<td>使用反冲洗</td>
<td></td>
</tr>
<tr>
<td>在水管上安装低流量、高压力的喷嘴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>在不同单元安装独立的计量表</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.2 煤矿节水

煤矿周边的水管理问题，以及如何处理和减少煤矿生产过程中的水排放问题，对山西省而言尤为重要。要更好地理解煤矿水管理问题，包括地下煤矿和露天煤矿，我们必须全面收集各煤矿的水文地质资料；有这些信息后，我们首先从认识上构建一个概念模式，然后再把它转化成一个三维数值模式来模拟和评估煤矿的发展。

在煤矿行业，为收集水文地质信息，建议使用勘探岩石工程钻孔。勘探钻孔可以用来收集地质水文和生态环境数据，能够节约大量的成本和时间。一个布局合理、管理到位的钻孔群系可以带来一个高效率、高环保、低成本的水文地质信息收集体系。例如，在土耳
其西部的一个大型金矿（柯扎金矿）工程区内，就分布有深度在200到400米之间的各类岩石钻孔；通过这些钻孔，收集到各种信息，这些钻孔也因此变成了监测地下水位，或者在泵压试验中地下水反应的水压计。

回用煤矿矿井和矿坑来储存地下水的创新做法可供山西省参考借鉴。这种“人造含水层”的做法首先由南非开创。主要思路是，不能仅仅把采矿看成一个终极开采行业，而应该继续回用矿井和矿坑来适时储存地下水，如果需要还可以回填矿采废料。需要对各开采层地下水水质进行系统监控。

节水可以在各采矿环节进行，不仅仅是直接开采活动，还包括现场管理，具体见框2.10。

框 2.10 粉层消除和节水

纽蒙特矿业公司是世界上最古老的、规模最大的金矿之一，纽蒙特过去在运营中曾经面临高粉层挑战。金矿道路上的高粉层严重威胁呼吸系统健康，道路可视性也大大降低，人们甚至担心粉层会污染河水径流。人们最终采用氯化镁方案来控制道路粉层，但这个方案的实施需要水车每天洒18次水，在整个方案实施的七个月里，道路洒水大约消耗了38万m³的水。后来，美国通用电气公司与纽蒙特合作研发了一个通过使用一种有机粘结剂，而实现长期消除粉层的方案。使用这种粘结剂后，道路表面可以硬化，从而达到防尘的效果。这种粉层消除方案大大减少了对道路的养护，纽蒙特每年也因此减少了90%的用水，其燃料消耗也降低了182000升，这样下来纽蒙特每年可以节省378000美元的运营成本。

2.5 开发替代水源与地下水补源措施

山西省的目标是把地下水开采量由原来的每年35亿立方米减少到20亿立方米。为了缓解地下水开采的压力，应该开发其他替代水源，如果表水或者处理水。具体做法在第2.5.1和2.5.2中都有讨论。另外一个重要渠道是利用雨水、洪水、洪峰流量等来系统补给地下水，并在山区开展水土保持工作。这一点在第2.5.3和2.5.4节中都有讨论。
2.5.1 加快多种新水源工程建设

根据山西省第二次水资源评价结果，全省地表水资源开发率为38.83%，总体上属于中开发利用水平。其中沁河、大清河、滹沱河（济胜桥以下河段）、漳河等河流及沿黄地区河流的开发利用率均较低，特别是沁河的开发利用率只有4.95%，有较大开发潜力。全省多年平均（1956-2000年）出境地表水量为73.27亿m^3，占同期河川径流量的84.4%，（范德相等 2005）大部分地表水不能得到有效利用，其主要原因是在一些主要河流上缺少控制性工程，没有形成以大型地表水源工程为骨干的地下水、地下水联合调度的现代化供水体系。

随着山西省社会经济发展，水需求逐年上升；为了满足这一不断上升的需求，必须建设更多节水工程，尤其是地表水工程。作为建议，政府应大力投资水利工程，加速发展平顺水库和万家寨水库建设工作。

此外，建国以来，山西省先后在沿黄河干流兴建了诸如禹门口、尊村等提黄工程以及万家寨引黄供水工程，这些工程年平均利用黄河干流水量仅为国家分配我省黄河允许利用量的五分之一，尚有较大的开发利用潜力。今后一段时期内，山西省应将黄河干流水资源开发利用作为重点水源来抓。对于已建的提黄工程，在加大投资力度，完善配套设施的同时，利用政策、法规、经济等手段，扩大供水规模和供水量，使其充分发挥应有效益。而万家寨引黄供水工程、中部引黄工程是解决山西水资源紧缺的重大措施。

2.5.2 非传统水源利用

城市废水的处理和循环利用、煤矿矿坑水的回收利用也可以作为地下水的重要替代。全省城市污水处理厂的排放量达到10亿m^3/a，但处理量不足60%，回用量不足10%。因此，应在法律、法规、政策、经济等方面出台严格的措施，加大政府投入，建设一大批城市污水处理及煤矿矿坑水处理回用工程，扩大污水的回用量，减轻对环境的压力。

到2010年底，全省各市县均建设污水处理厂。山西省已建成的城镇污水处理厂规模为248万m^3/d，实际处理规模154万m^3/d。目前，山西省仅在太原、大同、阳泉、忻州、临汾等五个市的五座污水处理厂实施了污水再生利用项目，污水再生利用总规模仅为6.2万m^3/d，实际利用率大多低于工业用水。可以看出，山西省污水再生利用水平很低，以现有污水
处理水量117.38万m³/d计算，污水再生利用量仅占污水排放总量的5.3%。其余污水处理厂处理后的出水直接排入河道，污水再生利用量很少，利用潜力很大。（山西省发改委等，2010）

Fig 2.33 太钢分质供水系统（其中处理废水用在工业流程中）

2.5.3 雨洪水的集蓄利用

雨水的集蓄利用，可以解决局部地区水资源短缺问题。对雨水资源的利用途径有水池式蓄水；水渠截流蓄水；堰塘蓄水；湖泊蓄水；雨水渗透间接利用和小区绿地及草坪蓄纳雨水等途径。表 2.3 对这些集蓄措施做了详尽的综述，以下是几个重要的集雨技术措施。

- 屋面雨水集蓄利用系统：利用屋顶做集雨面的雨水集蓄利用系统主要用于家庭、公共和工业等方面的非饮用水，如浇灌、冲厕、洗衣、冷却循环等中水系统。
可产生节约饮用水，减轻城市排水和处理系统的负荷，减少污染物排放量和改善生态与环境等多种效益。

园区雨水集蓄利用系统：在新建生活小区、公园或类似的环境条件较好的城市园区，可将区内屋面、绿地和路面的雨水径流收集利用，达到更显著削减城市暴雨径流量和非点源污染物排放量，优化小区水系统，减少水涝和改善环境等效果。因这种系统较大，涉及面更宽，需要处理好初期雨水截污、净化、绿地与道路高程、室内外雨水收集排放系统等环节和各种关系。

加大雨水渗透补充地下水系统：采用各种雨水渗透设施，让雨水回灌地下，补充涵养地下水资源，是一种间接的雨水利用技术。还有缓解地面沉降、减少水涝等多种效益。可分为分散渗透技术和集中回灌技术两大类。

分散式渗透可应用于城区、生活小区、公园、道路和厂区等各种情况下，规模大小因地制宜，设施简单，可减轻对雨水收集、输送系统的压力，补充地下水，还可以充分利用表层植被和土壤的净化功能减少径流带入水体的污染物。但一般渗透速率较慢，而且在地下水位高、土壤渗透能力差或雨水水质污染严重等条件下应用受到限制。

集中回灌主要利用渗透沟、渗透井、渗透池（塘）、水渠截流蓄水、堰塘蓄水、湖泊蓄水等进行地下水回灌，扩大地下水的补给量。

山西省降雨时空分布极不均匀，洪水的年际差异更大。此外，由于全省大部分河流流程短、坡度陡、含沙量高、输沙量大，洪水陡涨陡落，水资源开发利用难度较大，1956~2000年全省多年平均出境水量73.3亿m³（范堆相等2005），占同期地表水资源量的84.4%，2010年全省出境水量30.6亿m³，（山西省水利厅2010）大部分为汛期洪水资源。

以下几个方法可以更好地利用洪水资源：

实施水利工程联合调度，充分利用洪水资源。由于山西省降水量存在严重的时空分布不均匀性，为充分利用洪水资源，可以通过工程措施，打破流域界限，进行水系联网，实施跨流域调水，尽量减少汛期弃水，这样既可增加全省区域的可利用水资源，又可余缺互补、以丰补欠，妥善解决洪涝和干旱的矛盾。

实施分阶段水位控制，科学调度多蓄水。在确保防洪安全的前提下，利用监测、
预测预报手段，准确掌握信息，采用分阶段控制汛限水位，合理蓄水、调度。

■ 实施阶梯开发。合理利用山区洪水资源。通过修建蓄水工程措施，如小型水库、塘坝等拦蓄河道洪水，调节供水时间和空间，增加可利用水量。

■ 积极开展引洪灌溉。扩大地下水补给。在行洪期间增加对洪水资源的利用，如引洪灌溉，引洪淤地等。

不论有没有雨水渗透，补给都是地下水管理的一个重要因素，必须优化地下水补给过程。降水渗入指水从地表渗入土壤的过程。入渗率是土壤能够吸收降雨或灌溉水的速度，入渗率是以毫米/每小时来计量的。随着土壤逐渐饱和，入渗率也慢慢下降。除非有物理障碍存在，如果降雨速率超过入渗率的话，就会发生径流。入渗水的一部分会停留在土壤浅层里，这部分水就是所谓的“绿色水”；还有一部分水穿过土壤和其他地下物质慢慢地沿水平和垂直方向流动，并最终在河岸渗漏进入河流。还有一些水会入渗到地下更深处，补给地下含水层。如果含水层有足够孔隙，允许水在其中自由流动，人们就可以在这些含水层上凿井取水供其使用。

地下水补给可以通过拦截雨水、河水径流或者河水高峰值水流（自然补给措施）来实现，也可以通过人为干预加快自然入渗速度（含水层补给管理）的方式来实现，地下水补给同时也可以使其他因素（比如，灌溉）的副产品。所以，规模性补给意味着管控自然补给，实施人工补给，以及控制附带补给。

在提高地下水补给方面，有很多技术可供选择，其中一些技术历史悠久、历经考验，一些技术富有创新。这些技术包括家庭屋顶雨水收集系统、小型雨水储存器、补给水井、以及在洪水灌溉中用到的水库或储水池等。小规模地下水补给对解决家庭或者社区需求最为适宜。许多补给系统对家庭、社区、水库管理者、个体或政府水利水电部门等都同时适合，可以方便地安装管理。

在表2.4中，本文对世界上不同地区采用的不同水缓冲技术进行了综述，这些技术共归纳为四类：（A）土壤湿度保持；（B）浅层地下水补给；（C）地表水存储和洪水的有益利用；（D）地区水保持普通景观措施。
表 2.4 各类水缓冲技术综述

<table>
<thead>
<tr>
<th>#</th>
<th>主要分类</th>
<th>适合地形</th>
<th>坡度</th>
<th>降雨</th>
<th>特点</th>
<th>区域特征</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>泥土轮廓堤</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>3-15%</td>
<td>平均降雨-接近平均-接近高强度雨量</td>
</tr>
<tr>
<td>2</td>
<td>绿草带</td>
<td><8%</td>
<td></td>
<td></td>
<td>接近平均-接近高降雨量-高降雨量</td>
<td>适合所有土壤。常与堤结合建造，尤其在坡度15%以下的斜坡上。绿草带可以提供草料，能够吸引益虫，可以用作虫害统一管理。不适合机械农业。</td>
</tr>
<tr>
<td>3</td>
<td>闸沟</td>
<td><10%</td>
<td></td>
<td></td>
<td>全降雨系列</td>
<td>适合所有土壤 - 溪流和沟渠地带。与植被恢复一起应用，以及在沟渠沿线系列建造最为有效。可以在潮湿地区使用，比如拦水坝。在潮湿地区，须安全处理富余水。建筑材料可以因地制宜。</td>
</tr>
<tr>
<td>4</td>
<td>梯田</td>
<td>15-55%</td>
<td></td>
<td></td>
<td>全降雨系列</td>
<td>适合深土田。根据用途和农业气候不同来设计不同外形。在较潮湿地区，须设置横向梯度，以便排水。在干旱区，可以适当扩大间距，以便收集雨水，以供梯田作物耕作。在梯田建设最初几年，要禁止放牧或监管放牧，以防梯田破坏。</td>
</tr>
<tr>
<td>5</td>
<td>石堤</td>
<td><35%</td>
<td></td>
<td></td>
<td>平均降雨-接近平均</td>
<td>适合所有有石头的土壤。修筑石堤可以去除田地里的乱石，石堤比土堤坚固，占用的面积上比土堤和梯田少。不鼓励在此自由放牧或为家畜通过提供通道。</td>
</tr>
<tr>
<td>6</td>
<td>梯形堤</td>
<td>0-2%</td>
<td></td>
<td></td>
<td>平均降雨-接近平均</td>
<td>适合种植农作物和草料的缓坡。应避免在陡坡上建梯形堤，因为这样做会需要动用大量土方。需要一个集水区为其集中或分</td>
</tr>
<tr>
<td>#</td>
<td>主要分类</td>
<td>适合地形</td>
<td>特点</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>分层田脊</td>
<td>高 中 低</td>
<td>1-5% 平均降雨-接近平均-接近高降雨量</td>
<td>适合所有土壤。在半湿润地区，最好建在排水良好的土壤。较适合行播作物，比如玉米、高粱等。行层间距取决于降雨模式，坡度和土壤质地。分层田脊也适用雨季到来之前的漫灌工程。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>半月堡</td>
<td>中 低</td>
<td><5% 平均降雨-接近平均</td>
<td>不适合在破解粘土上建造。经常建在入渗性好、含薄土结皮的砂质土和砂质壤土上。交错建造的话，可以更有效地收集雨水。主要用在干旱地区的作物种植，也可以用于牧草地的改良。建在坡度大于5%的斜坡上，建成小石坎半月形堡，用来植树。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>护根圆盘</td>
<td>中 低</td>
<td>缓坡 平均降雨-接近平均</td>
<td>适合干旱和半干旱农业气候。用来植树或种植高经济价值一年生作物。经常与滴灌和微咸水灌溉一起使用。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>沼泽地</td>
<td>中 低</td>
<td><15% 接近高降雨量-高降雨量</td>
<td>要安全处置积雨。适合深层、渗透性土壤。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11 | 堆制肥料 | 中 低 | 全降雨系统 | 适合任何土壤，可以提高有机物质含量、降低肥料使用。堆制肥料可以把水分困在土壤中，从而提高相关水缓冲技术的实施效率。对有机肥料（作物、菜园剩余物、粪便等）大量存在的地区适用。堆肥生产需要大量的水来保持堆制肥料的湿度和活性。最好在离家不远处堆制肥料，以便方便管理，或者离菜园不远，以便快速方便使用肥料。堆制肥料对于有严重构造问题的土壤尤其重要，比如，硬实和土壤结

80
<table>
<thead>
<tr>
<th>#</th>
<th>主要分类</th>
<th>适合地形</th>
<th>坡度</th>
<th>降雨</th>
<th>区域特征</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>生物炭</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>全降雨系列</td>
</tr>
<tr>
<td>13</td>
<td>有机覆盖材料</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>接近平均-中等降雨量</td>
</tr>
<tr>
<td>14</td>
<td>塑料薄膜</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>平均降雨-接近平均-中等降雨量</td>
</tr>
<tr>
<td>15</td>
<td>无脊椎动物利用</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>拖坑</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>2~8%</td>
</tr>
<tr>
<td>17</td>
<td>轮廓沟</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td><30%</td>
</tr>
<tr>
<td>18</td>
<td>管道水补给</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td><10%</td>
</tr>
<tr>
<td>补给和保持技术</td>
<td>适合地形</td>
<td>特点</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>主要分类</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>坡度</td>
</tr>
<tr>
<td>19</td>
<td>地下水坝</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><5%</td>
</tr>
<tr>
<td>20</td>
<td>沙坝</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><5%</td>
</tr>
<tr>
<td>21</td>
<td>渗透池</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>道路雨水收集</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>小型山边水储存</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>集水池</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>#</td>
<td>主要分类</td>
<td>适合地形</td>
<td>特点</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>收集岩石露头雨水</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>坡度</td>
</tr>
<tr>
<td></td>
<td>收集屋顶雨水</td>
<td>高</td>
<td>中</td>
<td>低</td>
<td>坡度</td>
</tr>
<tr>
<td>26</td>
<td>漫灌</td>
<td>平均降雨-接近平均</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>27</td>
<td>水箱</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>28</td>
<td>砂石控制性开采</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>29</td>
<td>泉水补给区保护</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>30</td>
<td>践踏保护</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>31</td>
<td>河岸绿化</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>32</td>
<td>湿地保护</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>#</td>
<td>主要分类</td>
<td>适合地形</td>
<td>特点</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>加强放牧控制</td>
<td>高 . 中 . 低 . 坡度 . 降雨</td>
<td>结痂粘土 – 所有土壤。干燥草原环境中的大片放牧区。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>林场和防风林</td>
<td>.</td>
<td>所有土壤 – 家园周围或农场边界。树木还可以与一年生作物共存。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>保护性农业</td>
<td>. . .</td>
<td>农田范围内。对易侵蚀土壤尤为重要，注重水资源的优化利用。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5.4 水土保持，涵养水源

山西省位于黄土高原东翼，由于水土流失造成地面支离破碎，坡陡沟深；地面大部覆盖着结构疏松的黄土，在重力、水力、风力条件下容易流失；植被稀疏，天然次生林和天然草地主要分布在林区、土石山区和高地草原区；年降雨量少而集中，蒸发量大，气候干旱，自然灾害频繁。在黄土高原区，虽然目前已开展了大量工作来进行水土保持，但仍有大片面积尚未治理。在水土保持工作中，有以下几项重点任务：

• 山区、丘陵区重点水源涵养地周边的荒山荒坡全部营造水源涵养林；对有成林希望的疏林地和灌木林实行封山育林；对现有水源涵养林的部分低质量的中幼林实施抚育；对剩余的现有水源涵养林实施封禁管护。在第一年幼林成长的关键阶段，可以使用专门的土壤调节剂来改善土壤水分含量。

• 修建拦沙保水工程——淤地坝。淤地坝，是指在水土流失区各级沟道内修建的以滞洪拦泥，淤地造田为目的的水土保持工程措施。淤地坝建设增加了水肥条件较好的基本农田，使农民由过去的广种薄收改为少种高产多收，优化了土地利用结构，促进了陡坡耕地退耕还林还草，推动了大面积植被恢复，改善了生态环境。淤地坝建设调整了土地利用结构，解决了林牧用地矛盾，变农林牧相互争地为互相促进、协调发展。淤地坝建设拦蓄地表洪水，减缓洪水在流动速度，增加地下水入渗水量，涵养水源。据测算，一亩坝地可促进 6—10 亩的坡地退耕。如陕西绥德县王茂庄小流域，大力发展淤地坝后，在人口增加、粮食播种面积缩小的情况下，粮食总产稳定增加，大量坡耕地退耕还林还草，耕地面积由占总面积的 57%下降到 28%，林地面积由 3%上升到 45%，草地面积由 3%上升到 7%。实现了人均林地 2.4 公顷，草地 0.3 公顷，粮食超千斤。
除了各种地下水补给涵养措施外，通过提高土壤吸收和保持水分的能力，来使水分停留在原地而不散失也是同等重要。在此方面，可以采取几种措施来提高土壤状况，可供山西省参考借鉴。一个提高土壤保湿能力的流行做法是在农业中使用自然岩石。这样可以提高土壤长期的肥沃度，从而减少对化肥的依赖。目前，有几种形式的岩石粉末都可以长期提高土壤的肥沃度和保湿能力。可以采用不同规模来收集和生产这些岩石粉末。对山西省而言，最富前景的岩石粉末是沸石粉，沸石在山西已有开采，但用在农业上的却不多。

另外一个有前途的“自然”技术是把生物肥料和岩石粉末混合使用。岩石粉末（来自采矿和石料厂）含有丰富的养分，可以长期恢复和提高土壤的产值。如果使用自然酶、糖和粪便把岩石粉末与生物肥料混合，其中发生的生物消化会促进土壤对养分的吸收。

框 2.11 沸石
沸石是一种吸水硅铝酸盐矿物，有带负电荷的微孔，可以储藏水分和作物养分比如钾和磷。天然沸石有 40 多种，不同种类的沸石有不同吸附离子的能力。沸石的构造开放性较大，有很多大小均一的空洞和孔道，这些空洞和孔道可以吸收和储存水分。沸石还可以提高土壤的通气性，减少土壤结块，促进作物根系发育，提高作物出苗率，促进草类和粮食作物持续生长。沸石还可以减少
地表水径流、积聚，减少地面干燥面积的发展，提高给作物的供水。沸石可以促进微生物的活动，从而增加土壤的肥沃度。
2.6 地下水水质保护和修复

在全世界范围内，地下含水层正在面临城镇化、工业发展、农业活动以及采矿业带来的日益严重的污染的威胁。山西省也不例外。我们迫切需要出台保护地下水自然水质的机制计划、行动方案。一旦人为排放和其他污染物泄露（来自城镇、工业、农业和采矿活动）对地表下层造成的污染得不到有效控制时，含水层污染就会发生。为保护含水层不受污染，必须控制当前和未来的土地使用、污染物排放和垃圾处理方式。在下表中，报告对常见地下水污染形式进行了综述（世界银行，2002）。对山西省而言，煤矿对地下水的污染尤其严重。

表 2.5 常见地下水污染物和相关污染源

<table>
<thead>
<tr>
<th>污染源</th>
<th>常见地下水污染物和相关污染源</th>
</tr>
</thead>
<tbody>
<tr>
<td>农业活动</td>
<td>硝酸盐、铵、农药、粪便细菌</td>
</tr>
<tr>
<td>现场卫生</td>
<td>硝酸盐、卤化烃化合物、微生物</td>
</tr>
<tr>
<td>加油站和修理厂</td>
<td>芳烃、苯、酚、卤代烃</td>
</tr>
<tr>
<td>固体废物处置</td>
<td>铵、盐、卤化烃铵、重金属</td>
</tr>
<tr>
<td>金属业</td>
<td>三氯乙烯、卤代烃、重金属、酚类物质、氰化物</td>
</tr>
<tr>
<td>铁矿煤矿</td>
<td>酸、各种重金属、铁、硫酸盐</td>
</tr>
<tr>
<td>农药生产</td>
<td>卤化烃类，酚类，砷</td>
</tr>
<tr>
<td>石油天然气开采</td>
<td>盐（氯化钠），芳香烃类</td>
</tr>
</tbody>
</table>

为保护地下含水层不受污染，必须（1）控制现在和未来的土地使用情况：（2）控制污染物的排放，以及来自主要污染源的废物处理，比如煤矿污染、农业污染以及最终对受污染的含水层的治理。这些将分别在第2.6.1节至2.6.4节中讨论。

2.6.1 控制土地使用

除了在前面第2.2.6节中我们讨论的如何改变经济活动布局，以减轻对地下水开采的压力外；另外，还应该制定一个综合土地使用规划，来保护地下水水质不受污染。根据国际经验，在减少地下水污染危险方面，可以采取以下几种措施：

- 绘制易受污染地下含水层分布图
- 编制地下污染源目录
- 地下水水位和水质监控
- 地下水污染危险评估和控制

(1) 绘制易受污染地下含水层分布图

绘制易受污染地下含水层分布图通常是地下水水质管理的第一步，尤其就市政府或省政府利益角度而言。易受污染地下含水层是指某个对强加污染物负面影响敏感的含水层。易受污染地下含水层分布图的绘制可以有效地减小地下水污染的危险。

图 2.35 网上公布的受污染地下含水层分布图（荷兰）

(2) 编制地下污染源目录

这项措施包括系统辨认、确定和描述污染源，并获取这些污染源的历史演变信息。在一些已经存在可能对地下水产生污染活动的地区，必须把控制地下水污染作为首要任务来抓；另外，还有必要确定哪一种活动可能会给地下水带来最为严重的污染。

(3) 地下水水位和水质监控

通过地下水水位和水质监控，我们可以得到地下水体系基线自然水质信息，收集含水层体系新数据，以改进相关概念和数值模型，另外地下水水位和水质监控还可以为地下水污染危险评估提供证据。
（4）地下水污染危险评估和控制

在一些已经存在可能对地下水产生污染活动的地区，必须把控制地下水污染作为首要任务来抓。不论是城市还是乡村，我们有必要首先确定哪一种活动可能会给地下水水质带来最为严重的污染。需要制定一个既有明确的严格目标制定、又有主要合作单位参与的执行计划（见框2.12）

框 2.12 通过工业协会来促进清洁技术（巴基斯坦）

由自皮革行业造成的地下水污染，尤其是铬污染，一直是巴基斯坦一些地区面临的一个严重问题。在上世纪90年代，巴基斯坦制革协会开始实施“考兰基环境管理方案（KEMP）”。这个方案的主要目的是减小未经处理的排放污染，以满足欧盟国际法规规定要求。这个方案最初是为卡拉奇附近考兰基地皮革厂的老板们设计的。按照此方案，这些老板们必须引进清洁的生产方式和技术，包括改进实验室装备、采用节水措施、改进排水和化学存储系统和建立操作健康安全体系等。清洁技术包括化学回收厂、初级污水处理厂、以及机械化解决方案，例如盐掸子等。在这个项目中，一旦某个制革厂接受了这个清洁技术包，它就可以得到聘请咨询专家组的“免费”技术咨询服务。继考兰基方案的成功实施后，在巴基斯坦纺织工业领域里也开始了一个类似的方案，有100多家追求进步的纺织厂都参与到该方案中了。
2.6.2 控制煤矿污染

在山西省的119个县、市和地区中，94个县市都有煤炭资源，全省80%的城市为矿产资源型城市。山西省煤层分布面积达到62000平方公里，占总土地面积的40%。山西省已探明煤炭资源储量为2652亿吨，占全国总探明煤炭总量的26%。从煤矿和其他相关工业中排放的污水严重污染了地表水体，造成3753公里长的河流污染（Hong et al., 2011）。

煤层和泥岩中含有黄铁矿（硫化亚铁）；随着水位下降，硫化亚铁在空气中氧化，整个过程还伴有硫氧化细菌的产生。这样，煤矿排放的废水由于含有硫酸和高浓度的硫和铁，以及其他金属，其酸性极高，pH值达到2和3，被称为酸性矿井排水（AMD）。一旦矿井关停，酸水就会污染地下水资源。酸性矿井排水的一个重要处理方法是煤矿井下密封：取代原本的空气加水的环境，用防渗灌浆材料（比如用燃煤火电厂的副产品，烟气脱硫（FGD））密封矿井巷道，阻止氧化反应。除此之外，根据煤矿废水的水质，90%的矿坑水可以通过先进的水处理技术处理回收利用，比如反渗透法和微滤。废
水回用，再加上到位的水管理，可以使采矿业节约40%的日常淡水摄取量（Szyplinska, 2011）。

一个更为传统的遏制采矿对地下水污染的方法是原位修复法。使用可渗透反应屏障（PRB）的被动原位地下水修复法是一个保护含水层不受工业和采矿污染的实用解决方案。可渗透反应屏障是一种地下建筑结构，横截污染排放物的流动路径。他们可以永久、半永久或移动安装。污染物在与屏障填充反应材料发生地质化学反应后，从地下水水流中驱除出去。反应材料和截污机制的选取主要决定于屏障系统要处理的污染物类型。比较适合的材料包括元素铁，活性炭，沸石，铁氧化物/氧水合物，磷酸盐和粘土矿物等。这种方法可以极大地降低浅层含水层污染修复处理成本，因此可以广泛用于地下水资源的保护（Prokop et al., 2003）。

图 2.36 可渗透反应屏障

2.6.3 控制农业污染

正如在第一章中阐明的那样，农业化学品污染是山西省面临的一个严重问题。要减少这一类污染，我们建议改变传统耕作的方式，更加注重综合虫害管理和养分资源综合管理。综合虫害管理（IPM）的目的是使用自然安全方法控制虫害和作物病害。综合虫害管理把经济和环境危险降到了最低，可以有效预防杀虫剂和除草剂对地下水的污染。为了防治虫害，建议采取轮作方式，选择抗病虫害品种，种植无虫害砧木。这些控制措施十分有效，价廉高效，对人和环境危害极小，甚至无危害。在虫害防治上，首先选用高效、低风险的方法，包括针对性很强的化学品，比如用费洛蒙来扰乱害虫
的交配，或者采用机械控制措施，比如灯光诱杀或除草。如果进一步监控、确认和行动阈值都表明低风险的办法不起作用的话，可以再使用其他虫害控制办法，比如针对性喷洒农药（Chevalking et al., 2008）。

同样，通过对养分资源的综合管理，可以降低肥料的使用量。研究表明精确施肥（按时、按量、按类型以及使用其他替代肥料）可以节约45%以上的肥料使用。以水稻为例，平均大约有65%的氮肥在施用过程中流散到环境中（Pathak et al., 2011）。此外，研究证实氨肥和磷肥的过多施用会导致产量下降，这表明肥料并不是施加得越多越好，超量施用反而会导致减产。在开始阶段，随着氮肥施加的增加，产量也会随之提高；但如果施加量超过一定限度，产量增长曲线会向负值方向发展（Tilman et al., 2002）。在很多情况下，养分资源综合管理都是一个可行的解决方案。在养分资源综合管理系统中多种相互补充的措施得以配合使用，既有自然土壤肥料，也有人造化肥，另外还包括一些机械措施的应用，并且充分考虑到了施肥时间、作物需求以及农业气象等因素（Gruhn et al., 2000）。为在某一具体田地施加氮肥而安装的作物需求实时监测传感器是实施精准农业的一个技术突破（Singh et al., 2006），这一突破大大提高了氮肥的使用效率。矿物肥料和有机肥料的配合使用，而不是单纯使用矿物肥料，除了可以提高单位合成肥料的作物产量外（Tilman et al., 2002），还可以长期维持作物的产量（Gruhn et al., 2000）。比如，Prasad et al.（2002）研究发现在水稻花生重茬上，绿色肥料与无机肥料相结合可以大大提高产量。另外还有其他一些技术突破，比如通过使用酶来促进作物对磷肥的吸收，从而减少肥料的实际使用量。另外一个建议的方法是在农田里大量使用沸石（见上文），以提高土壤长期的肥沃度。

2.7 最终目标：建设节水型社会

山西省最终目标是建设一个节水型社会。水资源贫乏是山西省的基本省情。这并非什么新鲜事情：山西省历史上就干旱频发。正如在第一章中所描述的那样，山西普遍降雨稀少，降雨量年际变化较大。这一状况在过去的30年里，受气候变化的影响，变得更为糟糕了。

必须把节约用水，提高水资源的利用效率作为全省经济和社会发展的基本方针，长期坚持下去。0188-PRC 赠款项目示范项目经验表明可以在高效节水农业基础上发展
充满活力的地方经济。建设节水型社会的总体目标是到2020年前，在全省范围内建成与山西水资源条件相适应，具有山西地域、经济、文化特色的现代节水型社会，为实现全省经济总量翻两番建成小康社会提供水资源保障。

主要内容是全面建设节水型农业、节水型工业、节水型城乡生活、节水型生态环境和水资源保护五大体系。要根据各地水资源承载能力，确定经济发展方向，调整经济社会布局。本章前面几节就如何实现这些目的给出了相关建议。

节水型社会建设的本质是建立以水权、水市场理论为基础的水资源管理体制。除政府的严格管理、广大水用户和水利益相关单位参与以外，经济手段也是建设节水型社会的一个重要因素。首先，水权在不同地区之间分配；然后，应该在不同层次的各用水户之间分配。如第2.2.4和2.2.5节中的介绍，这一配额体系已在山西省一些区域实施。此外，还应该像太原市工业用水管理那样，实施水消费定额机制，以抑制用水量的增加，提高水使用效率，从而达到节水的目的。

第二，要组织制定用水权交易市场规则，建立用水权交易市场，实行用水权有偿转让。通过用水权的市场交易，建立起有效的节水激励机制，使广大用水户能从节水投入上获得相应的回报，促进提高水资源的利用效率和效益，并引导水资源向节水、高效领域进行二次配置。建设一个水资源高效利用的社会和经济，还需要考虑以下两项补充措施：

- 建立地下水动态监测系统；
- 提高广大群众参与地下水管理的意识。

2.7.1 建立地下水动态监测系统网络

地下水动态监测是地下水资源管理和保护及实施取水许可制度的一项重要的基础工作。通过对地下水位、开采量、水质以及周边环境如降雨量、河川径流等监测，才能掌握地下水环境状况，适时调整防治措施和开发方案。
还可以通过公布监控结果方式动员更多的人参与到地下水管理之中。监控结果公布可以以报告、公开网络信息平台方式进行，也可以通过举办特别宣传活动、公开讨论、公共展示等方式进行（见框2.13）。

框2.13 公开地下水监控信息

为使更多的人都参与到地下水管理中，在荷兰不同地区都安装了地下水水位监控器。这些监控器显示地下水资源的变化，揭示了地下水的主要特征。
2.7.2 动员广大群众参与：提高地下水保护意识

图 2.38 节水宣传栏

越来越多的人认识到社会规范和社会态度对地下水管理的重要性，由于这些规范的存在，一些水用户不仅开始改变自己的行为，而且还纠正他人不当用水行为。最近各国出台的主要政策文件都体现了节水意识提高的重要性，并侧重引导这些意识规范和价值观朝着可持续水资源利用的方向发展。在过去的十年里，全球大型国际机构、各国政府、地方群众组织以及非政府组织都积极出台和建议节水新举措。在山西省，提高广大水用户、普通民众甚至青少年的节水意识对构建“节水型社会”至关重要。

宣传活动是一个被广泛使用的政策工具。通过组织宣传活动，决策者和其他利益集团希望改变公众的用水行为，树立新的用水社会规范和态度。现在人们也越来越认识到社区参与私人和公共项目的重要性。意识的提高应该被看做为一个互动的过程，在这个过程中不同参与者都积极表达自己的观点，主动改变自己的行为，来共创一定的社会压力。为达到这个目的，不同交流渠道的优化结合十分必要。在地下水宣传活动设计上，以下两点内容很重要：（1）选择合适的活动开展形式；（2）系统地设计和组织提高地下水认识的宣传活动。
在组织宣传活动提高地下水管理上有几种方法可供借鉴。我们这里所介绍的活动设计模式侧重寻找不同提高意识方法的最佳结合。这些方法包括公共关系、理念宣传倡导、人际交流和学校教育项目等。

对某一种方法的选择是基于以下几个因素考虑的：
（1）活动的推广设计；
（2）活动内容的复杂性或简单性；
（3）公众直接参与活动的可能性；
（4）“活动目标对象”给活动内容带来的影响。

按照这些标准，我们可以设计以下三种基本活动形式：

（1）**市场模式**：大规模推广、内容简约、低水平公众积极投入、低水平公众活动影响；

（2）**教育模式**：中规模推广、内容相对复杂、高水平公众积极投入、低中水平公众活动影响

（3）**社会/当地模式**：小规模推广、内容中等复杂、高水平公众积极投入、高水平公众活动影响

如图2.40所示，所以活动组织方法都可以归纳到这些模式之中。每种模式位于中心位置的方法，对该模式而言最具代表性。比如，社会/当地模式中位于中心位置的“参与工具”。相反，如果我们对比“参与工具”和“理念推广”会发现后者既有社
会/当地模式的特征，也有当地/市场前模式的特征。一个好的活动组织是各类模式因素的最佳组合。

图 2.40: 节水宣传活动实例 (1) 和水用户一起编制水资源分布图（社会模式）; (2) 组织一个青年比赛活动，比如地下水大会（社会模式）; (3) 使用游戏形式（教育模式）; (4) 使用特殊水徽标

2.7.3 地下水学校教育

教育方法在许多活动组织中都得到广泛使用，包括节水项目、卫生活动、环境意识提高等。让教育行业参与进来，可以为我们带来更好的前景，因为教育行业本身就是一个现存的、以教授知识为主的体系。组织教师学习有关水资源方面的知识，把这方面的知识纳入常规课程设计中是提高节水意识的有效的、可持续的方法。
表 2.6 把水资源相关知识纳入学校常规课程设计

以下课题可以纳入学校教授的常规课程中：

水和立法

• 地方水资源法律法规总结介绍
• 谁来负责立法？

水和地理

• 绘制你的流域图。这些流域的界限是什么？这些界限是如何定义的？

水和历史

• 辨别历史上以及当前哪一种用水方式可能影响了地下水水质和水量。

水和化学

• 如何确定地下水水体是否健康？
• 我们的流域面临哪些环境问题？

水和数学

• 地下水水体污染物历时对比
• 用图形描述沿着河流两岸的人口增长

其他活动包括比如采访水利部门的某位专家、与水相关话题的社区采访、邀请政府代表介绍水法等。

图 2.41 儿童节水教育
3. 多重收益示范工程

2009年，亚洲开发银行批准了山西省农业综合发展项目，以促进山西省26个贫困
县的农业发展，尤其是个体农户的脱贫致富。这个项目获得亚行水利融资合作伙伴基
金50万美元的赠款，用以资助山西省通过地下水管理和高效农业来适应气候变化的规
划。依据亚行0188-PRC“通过地下水管理适应气候变化”赠款项目要求，在山西省四
个县进行了试点项目工程建设。

图3.1高效农业：祁县温室大棚

这四个县是从候选的八个县1中经过严格资格审查挑选出来的。主要按以下标准进
行筛选：一是当地地下水使用情况；二是是否属于亚行扶贫贷款大项目的一部分；三
是当地交通状况，是否可以便利到达。另外，还组织了多次现场考察，包括询问当地
农户和咨询相关专家。

最终，通过在当地政府和农户之间的筛选，选择了祁县、隰县、平顺和离石四个
县市（见图3.2）之所以选择这些县市，主要是因为它们具有很强的代表性，能够代表
山西省不同地区的现状，并充分体现当地政府和农民的利益。在与利益相关者仔细商
讨后，决定建设项目示范工程（见表3.1）。本章在第3.1到3.4节，分别介绍了四个示
范项目区情况。由于离石县示范项目开展了大量有关低温区灌溉技术的研究工作，报
告单列一节第3.5节，详细讨论了相关研究。

1这8个县市包括榆次、祁县、太谷（晋中市）、离市区（吕梁市）、隰县、尧都经济开发区（临汾市）、临猗县（运
城市）和平顺县（长治市）。
表 3.1 亚行 0188-PRC 赠款项目示范工程

<table>
<thead>
<tr>
<th>县城</th>
<th>行政村</th>
<th>示范工程</th>
</tr>
</thead>
<tbody>
<tr>
<td>祁县</td>
<td>西六支</td>
<td>温室大棚滴灌，包括节电的变频器</td>
</tr>
<tr>
<td>隰县</td>
<td>曲盐</td>
<td>黄土高原果园涌泉灌（大口径微灌）</td>
</tr>
<tr>
<td>平顺</td>
<td>王曲</td>
<td>网格帐篷花椒芽菜种植微喷</td>
</tr>
<tr>
<td>离石</td>
<td>小神头</td>
<td>温室大棚滴灌/微喷，并附加升温池</td>
</tr>
</tbody>
</table>

赠款的目标是支持农民、引进创新水资源利用方式，提高适应气候变化能力、阻止地下水水位下降。由于地下水水位的持续下降，地下水开采费用不断升高、用水安全降低，帮助示范区农民采取可持续用水方式势在必行。通过示范工程项目的实施，灌溉水的高效使用方法得到大力推广，实现了多重效益，促进了建立在水资源高效利
用基础上的区域经济的发展。本章以下部分将具体描述示范工程建设情况。这些示范工程可以作为榜样在山西省其他地区推广，但关注细节和注重质量应该是一贯的方针。另外一个重要事项是如何确保滴灌系统能够长期使用的问题。这就意味着农户必须能够自己更换设备，并且能够得到专业维护单位的支持。这些示范工程的实施还证实了以下事实，那就是在恢复地下水供需平衡方面，以及在气候变化背景下建设强大的水缓冲上，仍然还有很多可寻之路。

3.1 祁县—平原地区温室大棚高效灌溉经验

在山西省这片低洼地区，由于长期高密度的农业耕作活动，原本就非常缺水的状况进一步恶化了，导致地下水非持续利用的局面。如前几章所述，大范围地下水降落漏斗的形成，以及地下水水位的不断下降，给这片农业中心地带的经济发展带来巨大威胁。

图 3.3 离心式过滤器和变频器—精准灌溉系统组件

图 3.4 祁县温室大棚滴灌系统

祁县是山西省中心农业带的一个典型区县，是山西省主要粮仓之一，同时也是蔬菜种植和家禽养殖基地。祁县的农业收入相对较高。每个农业家庭成员每年收入可达14704元。由于没有工业发展，祁县经济发展主要依靠各类农业项目，包括家禽和养牛业。

然而，祁县农业的繁荣发展却是建立在对地下水的非持续性利用基础上的。这个地区明显缺水：总体年人均水量分配为263 m³，其中可利用水量为163 m³，这明显低于缺水地区的“法尔肯马克指标”（人均1000 m³）。由于地表水有限且受到污染，祁
县大部分用水来自地下水。然而长期以来，地下水一直被过度开采——2010年，开采量为补给量的173%。这样地下水位下降变得不可避免，每年平均下降0.76米。因此，在控制和降低地下水开采使用的前提下，如何更为高效地实施灌溉，以及如何提高生产力成为我们必须解决的难题。

西六支村示范工程距离祁县县城不远，工程引进高效温室大棚灌溉技术，大大提高了水生产力，其水生产力甚至达到历史最高水平，降低了对地下水的依赖。该示范工程可供山西中部其他平原地区学习参考。目前，全村温室大棚面积达到15公顷，灌溉水来自150米深的水井。西六支村的大棚有两种形式：第一种大棚为传统的半拱形结构，大棚一边为三米厚的土墙，顶部覆盖有厚草毡，夜间草毡放下，可以为大棚保温。这类大棚平均单位造价为56000元（占地667平方米或11.1亩）。第二种大棚造价较低。这类大棚由可移动的拱形塑料大棚组成，建造费用较低约为10000元。这些塑料大棚只能在温暖季节使用，因为它们不可能像覆有厚草毯的半拱形结构大棚那样御寒。

图 3.5 经济型拱棚
图 3.6 隔热保温绿色大棚

在试点区安装微灌系统之前，这些大棚主要采取大水漫灌方式；灌溉水来自横穿大棚的一条窄渠。在试点区，大水漫灌形式被先进滴灌技术取代；滴灌系统包括（a）中心控制系统；（b）地下埋管；（c）大棚内滴灌系统。中心控制系统配有压力表、双向管道线路，用于去除水中杂质的离心过滤器和变频器。变频器的设计是整个大棚微灌系统的一个创新。变频器可以根据系统的需要调整电流大小，这样就可以比传统电力设备节约40%的能耗。虽然在过去五年里，变频器在工业领域的使用已得到普及，但是在灌溉应用上还属首创。
村委会下设的水电服务部，在自愿基础上，负责对设备操控管理。除了设备兜外，水电服务部还负责制定灌溉计划，因为设备每次只能同时为四个大棚提供灌溉用水。农户需要支付水电费，其中水费为0.6元/m³。中心控制单元把灌溉水通过地下埋管道输往工程的39个传统大棚和20个拱棚里。每个大棚都有独立的供水系统－配有水表、电表、二级过滤系统、以及肥料农药混合单元。微喷头之间的间距在50到70厘米之间，以留空间供蔬菜种植。在紧靠每个大棚的控制室墙壁上印刷有不同节令水肥使用比例说明。在运用设备之前，农民会接受滴灌系统操作培训。这套设备安装费用为45600美元（亚行赠款），其中来自当地政府水源改善的配套资金为21万元。设备预期寿命为8年。

滴灌系统与造价较低的塑料薄膜配合使用，以节约水和肥料的使用。传统大棚供水速度设置在11m³/h；拱棚速度供水设置为8.5/m³每小时。半拱形大棚节水估计在40－60%或200 m³左右，塑料拱棚可节水150 m³。肥料消耗可降低35－40%。此外，通过精准施肥，作物产量可提高25－40%。水生产力（一滴水作物产量）提高了90%。一些作物，比如西葫芦，对这样的精准耕作尤为敏感；如果没有这些技术的改进，西葫芦的产量是不会提高的。这些估测是基于对当地农户的有限采访基础上的，还有待具体监测来证实。

如果以货币计算，每年每个传统大棚的利润估计可以增加到1万元左右。这与每个大棚4000元的投资，或6000元的投资（如果所有费用都加上的话）相比，利润空间还是很大的。对拱棚而言，利润稍小些，因为拱棚保温效果差，不适合冬季蔬菜种植，每个拱棚的毛利润为5000元，净利润可达2000元。另外一个重要方面是大棚节水技术的使用可以节约大约80%的劳动力投入，因为由于滴灌系统的使用，人们不再把时间耗费在大水灌溉了。

西六支村农合社已经开始二期大棚工程建设，二期工程与示范工程建设模式相同。二期工程完全由农民自己出资，技术上更进一步，面积是示范工程的三倍，包括102个传统大棚和57个拱棚。另外，二期工程还在各大棚里安装了传感器，用来检测各类蔬菜的需水状况，以便及时灌溉。目前，不断有其他地方农民前来参观学习；到2013年底，祁县全县有望全部安装使用先进滴灌系统。与省内一些地方不同，节水系统在祁县得到精确的设计和精心的实施，为项目成功实施奠定了牢固的基础。
3.2 隰县—在黄土高原上发展园艺

山西省大部分山区县村都比较贫穷，在这些地区的农业和其他经济模式的发展潜力较大；另外，与平原地带相比，山区水资源开采状况相对较好。在这些地区，引入能够拓展作物种植类型，并能充分考虑到当前农村人口组成老龄化的趋势因素，且能够节省劳动力投入的高水生产力（单位水带来的资金效益）系统，就显得非常重要。

隰县苹果园的涌泉灌

隰县是全国35个贫困县之一。隰县人口有107000，分布在8个乡和97个行政村。其农村特征很明显：所有人口中，有80000居民均为农民。农民平均人均收入是2496元，接近中国的贫困线。隰县有53000人口实际上生活在贫困线以下。

隰县是黄土高原的一部分，地势凹凸不平—由8个分散高原区组成。从1979年开始，隰县就开始大力治理恢复其河沟流域，到目前一百万亩流域已得到治理，另外还有近一百万亩流域有待治理。治理费用大约是5500元/亩，但也不尽相同：平坦高原区为1500元/亩；但在陡坡区治理费用较高，尽管由于推土机的大量使用费用有所下降。在坡度大于25度的地区，只能进行重新造林。黄土高原的治理工作带来了积极影响。与1979年治理项目开始时的情景相比：
- 平均每年每平方公里的土壤侵蚀量下降了1320吨
- 地表水保持量增加了26.8%（从14%到40%）
- 沉淀物拦截量增加了32.5%（从17.5%到50%）
- 森林覆盖率增加了32.8%

图 3.7 隰县苹果园的涌泉灌
隰县的气候适合种植高经济价值水果，尤其是酥梨、苹果和黄杏。隰县的“黄金梨”全国闻名，在明清时期就已成为贡品；在2008年奥运会期间，也被推选为供应奥运会特产水果之一。隰县气候条件（平均温度8.9度）、昼夜温差悬殊（促使糖分增加）、优质肥厚沃土（具有良好通气性）、以及水果品种多样性（例如，梨就有100多个品种）等充分表明了隰县在水果种植上的相对优势。果树种植土壤都得到极大改良：所定目标为35万亩，其中31万亩土壤已经改良完毕。隰县的经济策略主要定位在特产农业发展上，因为隰县没有工业或矿业基地，只有43万亩耕。隰县年降雨为570毫米，但年际变化较大，全年有150-170天无霜期。

改良工作包括：（1）推广新作物种植，促进水资源优化发展；（2）引入先进农业技术，包括化肥优化使用和先进嫁接技术；（3）推广间作种植，比如种植高度较低的菊花和豆类；（4）加大市场营销力度，包括农户提高其水果储存技术，以及新的市场渠道的开拓。

隰县水果产量因每年降雨量分布不均而受到限制。但灌溉非常有限，灌溉面积不足4400亩，而且多数情况下灌溉效果差和管理技术落后。农户甚至常常从取水点用水桶提水灌溉，但由于这些农户年龄都较大，这种方法也起不到多大效果。

亚行0188-PRC试点区设在离无庐山不远的区盐村，全村有120户家庭和514人口。区盐村有耕地2800亩，主要种植玉米、小米、高粱、豆类、土豆和经济作物，尤其是酥梨、草药和油料作物。亚行示范工程开发土地面积达250.5亩（服务52家农户），项目开发地地势都比较平坦，但仍有20米的高度差。这一坡度使得沟灌效率很低，或者根本无法实现。

鉴于这种情况，项目选用了“涌泉灌”，所用灌溉水管直径为0.8毫米，从而有效地防止了管道堵塞现象的发生。一个涌泉管道喷口浇灌一棵果树，而每一果树周围都有一个收集灌溉水的环形水坑。涌泉管道选用PVC软管，软管布置在果园里。所有灌溉软管都分别连接在区域主供水管道上。主供水管道长2320米，横穿整个250.5亩项目试验地。主供水管道上有58个分接口为各个果园供水。主管道的直径为110毫米。最初主管道的直径为是90毫米，但供水压力不够。目前，三分之二的管道已经置换。

灌溉水来自区盐村供水系统，该供水系统除了供应农业灌溉水外，还同时供应周边6个小村庄的饮用水。系统水源地是位于低海拔处的一眼水泉，水通过预埋管道抽到
一个中心蓄水池里；但有部分管道裸露在外，在管道裸露处建有排水井，供主管道排水使用，以防其在严寒季节破裂。微灌系统除了中心蓄水池之外，还包括一个小的中控单元，用来调节水压；另外，系统还配有离心过滤器，用来过滤灌溉水。在中控单元我们还可以选择把肥料或农药混加到灌溉水中。县水利局负责主供水系统，村委会则负责灌溉系统。项目分别提供了两次培训。

区盐村的示范工程受到了当地农民的热烈欢迎。现在管道微灌涌泉系统的使用，年纪大的农业劳动力也能经营自己的灌溉果园。而之前，他们只能提水灌溉，这也是当时他们唯一可以做到的。由于涌泉灌的使用，每亩果园产量现在有望达到 1500 公斤，所产苹果、黄梨售价能够达到每公斤 5 元钱，这样下来每亩果园的产值能够达到 7500 元。如果没有这套灌溉系统的话，每亩果园产量只有 600 公斤。示范工程建设费用为 335000 元，每亩平均建设费用在 1350 元，费用相比而言还是比较低的。投资回收期也因此较短。亚行示范工程高度符合当地政府订立的发展规划，那就是通过对当地小型水资源的开发和利用，进一步扩大在这一地区种植高经济价值园艺作物的规模。根据隰县政府规划，最终要把配有先进灌溉系统的面积扩大到 16 万亩，但要实现这一目标这还需要精心策划，并大力开发当地水资源。

3.3 平顺 - 为特色作物创造一个可控制的生长环境

平顺是山西东南一个山区县城，人口有 164000，大多数人口（135000）靠农业为生。全县 12920 亩耕地中的大部分靠雨水浇灌，灌溉面积仅有 10%。全县地下水资源利用率较低。县城境内矿物资源相对丰富（有硅石、铝矿、商业粘土等），县城制定了可持续能源发展规划（风能、太阳能），有巨大旅游资源潜力。然而，就目前而言，平顺县的主要经济基础，仍是农业，其主要经济作物为树木类（核桃和花椒树）；有一年生农作物，比如大米，小麦和豆类。该县也被归为贫困县，全县年人均 GDP 为 7658 元，但广大农民的收入要低得多，人均仅为 2720 元。
图 3.8 冬季修剪花椒树 图 3.9 花椒芽树网状帐篷内的微喷系统

高效压力灌溉系统因其节水功能，常常得到推广，但这个系统的更大功效实际上是增产。尽管此论点并不新鲜，但它却常常被人忽略（根据国际水资源综合评价机构的预测，通过应用微灌技术，产量可以提高5-56%）。

亚行赠款项目中，在花椒芽菜（花椒属植物）种植上引进的微喷系统，就是一个通过使用压力灌溉系统带来多重利益的好例子。花椒树是一种带刺的灌木，人们种植花椒树的目的通常是获取花椒籽作为调味品使用，花椒是中国川菜的主要调味品。在平顺，人们种植花椒树却并不是为了获取花椒籽，而是为了得到它的嫩芽叶。这是一种相对新型产品，主要以瓶装腌制调味品形式出售，同时作为一种新鲜美味食品在日益繁荣的城市市场上也有销售。农户花椒芽菜的种植得到当地一家食品加工企业的大力支持，这家企业把花椒芽菜加工成瓶装食品，为并农户早期购买花椒树苗及其他设备垫付资金。六年前平顺政府对网格大棚使用的推广对推动花椒芽菜种植发挥了巨大
花椒芽菜种植的另外一个技术革新是亚行赠款项项目中引入的微喷设备的使用，微喷设备一般悬挂在网格大棚上。微喷系统在以下三个村进行了试验：弯里（31家农户/40亩）、王曲（38家农户/50亩）和河南滩（100家农户/130亩）。使用新的微喷灌溉设备，不仅可以达到灌溉的目的，而且还可以把花椒树上的残余蚜虫冲刷掉。另外，微喷系统还与网格大棚内的一个小搅拌池连接，这样就可以在灌溉水中混加少量的肥料或农药。由于微喷控制系统的使用，可以有效的防止土壤过湿现象的发生。最终，实现了肥料、农药和灌溉水的节约使用（估计可以节约40%的用量），同时产量也大大提高（估计可以提高20%以上），而最重要的是这些产品现在全部是绿色产品。这个系统的使用不仅可以节水，而且还能够节能（肥料和水泵的使用都大大减少），它为农作物生长创造一个可控制的微环境，从而大大提供了作物产量。

花椒芽菜灌溉水主要来自两个源泉：一个是靠近河边的技改井；另外一个直接来自田边河流（灌溉两个小面积种植区）。并在附近的山坡上修建有两个储水池，一个体积为380m³，另外一个是250m³，储水池与长约4000米的水管相连；建造费用由当地政府承担。在亚行赠款项目的微喷系统中，另外还增加了重锤设计。在灌溉区铺设了连接各花椒大棚供水点（169个）的水路管线。同时，在每个网格大棚里也铺设了连接各微喷设备的水路管线。各供水点都配有水表和一个肥料农药搅拌单元。项目总投资为107万元，每亩平均大约5000元。在这些投资中，亚行赠款主要用来购置农田水路管道和微喷设备，总投资达到247000元，每亩平均1150元。

这样，农户在劳动力投入大大减少情况下，收入却有望增长15-20%。微喷系统的使用同时还带来了高质量的绿色花椒嫩芽产品，因为由于蚜虫被大量冲刷去除，农药的使用也就大大降低了。平顺政府正在当地所有花椒芽菜种植户中大力推广微喷系统的使用，并在其他蔬菜作物种植上试验使用。在该项目实施过程中，我们发现与农户密切交流和讨论尤为重要，因为微喷系统对他们而言是个新鲜事物，他们必须了解系统的功效，掌握系统的操作。

平顺当地食品加工厂是带动其地方经济成功发展的一个重要力量，该厂专业加工花椒嫩芽酱，并把产品销往国内广大市场。该厂由当地一名企业家创办，为推动花椒嫩芽种植做出了重要贡献。种植农户通过与企业签订协议，使他们的产品收购价格得
到保障，并且在幼苗和设备购置上得到企业的资金垫付。目前，这个协议进展得非常顺利，农户正积极扩大种植面积，工厂又新上了一条生产线，而且产能是原来生产线的三倍。

3.4 离石-发展低温区灌溉

随着全国各地对水果和蔬菜的需求不断增加，温室大棚也开始在最不可能出现的低温地区出现了，吕梁山区的离石县就是一个很好的例子。离石处在大陆季风气候中，冬天寒冷，在一些年份，无霜期甚至不到130天。大部分农村人口靠在工业或煤矿打零工为生。农业仅占全县GDP的3%，但这个比例正在上升，主要由于低温区日光温室大棚技术的蓬勃发展以及经济衰退对其他产业的影响。不过离石当前主要经济基础仍是采煤和工业发展（其工业产值达到30亿人民币）。

图3.10 离石蔬菜大棚

图3.11 大棚升温池
离石农村地区普遍贫困，农民年平均收入只有1106元，远远低于2293元的国家贫困线。人均水配有量每年也仅有324 m³。然而，离石县只有一小部分水资源得到利用。离石部分地区凹凸不平，耕地面积仅占5%。在地势平坦地区和沟谷，人们多种植玉米、蔬菜，饲养牲畜；在山区主要种植树木，包括核桃树等。

离石的蔬菜大棚和省内其他地区常见大棚一样呈半拱形结构，但在此基础上另外有几处技术改进，以应对寒冷的冬季。大棚黄土墙更厚（是4米而不是3米）。夜间许多大棚被厚厚的棉毯覆盖，用棉毯覆盖半拱形塑料顶的技术十分巧妙。在如此寒冷地区，大棚数量却在过去五年间迅速发展到500公顷，而离石县的最终目标是把大棚数量扩展为现在的三倍。

但离石面临的挑战不仅仅是气温，还有灌溉水的温度。根据经验，如果灌溉水温度低于10摄氏度的话，植物的成长就会受到影响。原因是作物的根毛停止生长，很多土壤中的微生物活动也停了下来。这对于幼苗而言尤其致命。然而，在离石冬季大部分河流水的水温都接近甚至低于零度。

如第3.5节所述，太原理工大学科研组在经过一个冬季的温度测量工作之后，为小神头村（海拔975米）大棚基地研发了一个冬季灌溉升温系统。这个低温区日光温室大棚可以供世界其他诸多寒冷地区参考应用。首先，系统使用来自相对暖和水源的供水，在本项目中暖和水源是东川河边的一眼地下泉，泉水储存于一个200m³的水库。泉水的优势是即使在一年中最冷节气，泉水温度仍然能保持在5度左右。泉水通过地埋管道运输到园艺区，在那里运来的水被保存在一个封闭的储水池里。接着，水在控制站过滤并分配到各个蔬菜大棚。每个大棚里都建有一个贴砖砌筑升温池，长2.75米，宽1.75米，高1.20米。灌溉水通过埋在塑料薄膜下规则排列的滴灌系统来浇灌蔬菜，或者通过悬
挂的微喷头来浇灌牡蛎蘑菇。升温池建在地面水平以下，并有高出地面25厘米的围边，以防尘土落入。升温池上盖有网盖，同样也是为了防尘，但同时也为了避免在温暖季节藻类的生长。升温池的混凝土结构底部覆有土工膜以防水渗漏。在升温池尺寸选择上，主要考虑尽量不占太大空间，但同时又能最大程度地接受阳光照射和地下温度。升温池的外形设计可以保证其接近池底的水温保持在10度以上，这样再通过一个小潜水泵抽水，灌溉水就可以流入大棚灌溉系统。

由于地下升温池和微喷系统的使用，大棚里现在可以种植第三类作物，每年额外收入达到每亩5500元，这已经超过了大棚的安装费用。另外，和其他试点区一样，由于滴灌和微喷的使用而实现的精准灌溉和可控作物生长环境，也有望降低农业成本、减少劳动力的投入，而同时又能提高作物的产量。因为该系统刚刚投入运行，现在对小神头示范工程的任何论断都为时过早；但据当地农民估测，系统投入使用后，作物的产量可提高至少10%，而同时化肥和农药的消耗可降低20%。劳动力投入的节省则会更多。

项目除在小神头建造升温池外，还对其他地区大棚进行了类似技术改进。不过，这些大棚采用的是由一个小型高架储水箱组成老式升温池。总而言之，亚行 0188-PRC 赠款项目共在29个大棚里（每个大棚平均面积为1.1亩）安装了滴灌系统，在17个大棚里安装微喷系统（总共1.93公顷）。项目造价（包括控制站）是24.5万元，平均大约每亩5000元。另外，当地政府投资300万人民币，用于主供水管道的购置，供应整个大棚区灌溉用水（3.3公顷）。

虽然新的设施造价高，但是项目在离石的放大潜力仍然很大，离石目前已经制定宏伟计划，开发灌溉水源，建造更多低温区日光温室大棚。另外，这个系统占地面积也比较大。可以想象，离石未来可以发展成为一个低温区日光温室大棚优秀基地，除努力研发低温区大棚技术外，还能够同时开发低温抗寒种子和作物品种。

需要注意的是，对离石和其他所有像离石这样的山区，必须了解和掌握其分散性水资源的状况。在一年不同节气，是否都有充足的水源保障，还有待精心观察和认真评估，另外还要考虑到山西省目前降雨模式改变因素。
3.5 专题: 低温区灌溉研究

世界上有很多地区，比如中亚，与中国北方和山西省一样，都处于低温带。离石县的灌溉技术因而可以在更大范围推广。山西省全省大约有40%地区处于低温区。冬天全省气温长期处于零度以下，山区和北部地区温度则更低。在这些地区，农业发展也与时俱进，尤其是温室大棚越来越多应用在农业中，甚至在寒冷高纬度地区。很明显，冬季灌溉水温度低是抑制作物的成长一个制约因素。泉水、浅层地下水，潜水或当地河流都可以作为灌溉水使用，但是所有这些浅层水源的水温在冬天会降得很低。在这些山区开凿深井提取温水的做法，即使可能的话，其昂贵的造价本身也令人望而却步。

在离石区信义镇小神头村冬天的河流水温一般在-3℃和3℃之间。用于灌溉储水的收集水井或储存池里的水温也不超过5度。这些温度都低于蔬菜种植（包括黄瓜、西红柿、青豆、瓜类、茄子和豆角）灌溉所需的8℃到10℃最低水温，因为灌溉水温过低会直接影响栽培和土壤温度。因此，如何提高温室大棚灌溉水温度是高纬度低温地区蔬菜种植的一个关键问题。

在亚行PRC-0188“通过地下水管理适应气候变化”赠款项目中，在升温池设计和使用上展开了系统研究。升温池设计上的主要挑战是如何在相对较短时间内迅速把水
池水温加热到所需的8摄氏度。另外，升温池体积要适中，不能占据大棚内太多空间。

为了设计升温池，科研组在2011年11月到2012年4月的冬季期间在现场开展了一系列研究工作。所有测试都在离石区信义镇小神头村现场进行。研究关注以下几个参数：水源河流温度、集水池和间质性流水池的水温分布、不同升温池的水温分布、升温池周边的温度分布、温室大棚外不同深度的土壤温度、温室大棚内外气温分布、温室大棚隔热墙内的温度分布、隔热墙的物质组成以及大棚内外空气湿度。测试数据平均每7到10天更新一次；下雪或下雨期间，随着温度骤降，为了获取不同温度和阳光照射水平条件下的全部数据，观测次数也随之增加。在每次试验过程中，需要对一天不同时间的温度变化进行持续观测，这些时间段分别是0:00，4:00，7:00，9:00，11:00，13:00，15:00，17:00，19:00。中午前后，由于温度变化大，观察频率增加。

科研组分别对两种不同设计的升温池进行了测试：一个有10厘米高围边的长方形升温池和一个有65厘米高围边的正方形升温池。升温池用砖砌筑，池内涂有土工膜层防止水流渗透。池内储存水位一般与地面持平。图3.11和3.12分别为测试的两种不同设计的升温池。

科研组分别对两种不同设计的升温池进行了测试：一个有10厘米高围边的长方形升温池和一个有65厘米高围边的正方形升温池。升温池用砖砌筑，池内涂有土工膜层防止水流渗透。池内储存水位一般与地面持平。图3.11和3.12分别为测试的两种不同设计的升温池。

图 3.14 长方形升温池
图 3.15 正方形升温池

本项目自2011年11月至2012年4月期间共进行了9次连续观测，记录了两个试验升温池的温度变化。试验的主要挑战是如何把整池水的水温在合理时间内升高到灌溉所
需的最低水温水平，同时水池储存水量应该能够满足整个大棚蔬菜浇灌的需求。升温池全天水温变化见表 3.2 和 3.3 所示。然而，最关键的测试参数是池底 80 cm 或 120 cm 深处的水温，因为这一温度决定整池水能否用来灌溉。因此，测试要回答的问题是哪种升温池设计更有助于水温从水面到水下的传递。

表 3.2 长方形升温池水温升温结果分析

<table>
<thead>
<tr>
<th>日期</th>
<th>天气</th>
<th>室外温度（度）</th>
<th>河水日平均温度</th>
<th>升温池进水口温度</th>
<th>水温达到 8 度所用的时间（h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.11.26-2011.11.29</td>
<td>多云转雨夹雪</td>
<td>10 -3</td>
<td>2.9</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2011.12.19-2011.12.21</td>
<td>晴转多云</td>
<td>1.8 -14.5</td>
<td>-5.6</td>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>2012.1.2-2012.1.5</td>
<td>晴</td>
<td>-10 -18.3</td>
<td>-14.2</td>
<td>-2.4</td>
<td>6.5</td>
</tr>
<tr>
<td>2012.1.13-2012.1.16</td>
<td>多云转阴</td>
<td>-2 -15.5</td>
<td>-8.2</td>
<td>-2.3</td>
<td>5.2</td>
</tr>
<tr>
<td>2012.1.29-2012.1.31</td>
<td>晴</td>
<td>2 -15.5</td>
<td>-7.7</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2012.2.16-2012.2.18</td>
<td>晴</td>
<td>-3 -11</td>
<td>-5.8</td>
<td>2.7</td>
<td>5</td>
</tr>
<tr>
<td>2012.3.10-2012.3.12</td>
<td>多云转晴</td>
<td>3.5 -4.5</td>
<td>0.1</td>
<td>4.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

表 3.2 长方形加热池塘的加热结果

<table>
<thead>
<tr>
<th>日期</th>
<th>天气</th>
<th>室外温度（度）</th>
<th>河水日平均温度</th>
<th>升温池进水口温度</th>
<th>水温达到 8 度所用的时间（h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.11.26-2011.11.29</td>
<td>多云转雨夹雪</td>
<td>10 -3</td>
<td>2.9</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2011.12.19-2011.12.21</td>
<td>晴转多云</td>
<td>1.8 -14.5</td>
<td>-5.6</td>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>2012.1.2-2012.1.5</td>
<td>晴</td>
<td>-10 -18.3</td>
<td>-14.2</td>
<td>-2.4</td>
<td>6.5</td>
</tr>
<tr>
<td>2012.1.13-2012.1.16</td>
<td>多云转阴</td>
<td>-2 -15.5</td>
<td>-8.2</td>
<td>-2.3</td>
<td>5.2</td>
</tr>
<tr>
<td>2012.1.29-2012.1.31</td>
<td>晴</td>
<td>2 -15.5</td>
<td>-7.7</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2012.2.16-2012.2.18</td>
<td>晴</td>
<td>-3 -11</td>
<td>-5.8</td>
<td>2.7</td>
<td>5</td>
</tr>
<tr>
<td>2012.3.10-2012.3.12</td>
<td>多云转晴</td>
<td>3.5 -4.5</td>
<td>0.1</td>
<td>4.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

在大多数情况下，长方形升温池在一天内能够把水温升高到 8 摄氏度以上。在升温池充水后，池水温度缓慢渐渐上升，其中水面温度上升速度明显比水底快。温室大棚气温在 12:00 到 20:00 之间最高，升温过程主要在此期间发生，在 20:00 到次日 8:00，
升温幅度较小。另外，水温随着气温的变化而变化，表层水温度变化范围要比底层水温度变化范围大，表层水对温度变化的反应较灵敏。

相比之下，有更高围边（60厘米）的正方形升温池升温时间要长很多。原因可以解释为低围边的长方形升温池的灌溉水可以更好地与室内加热空气接触。在长方形升温池里，水温从充水时的6.5°C上升到可以灌溉用的8°C平均需要23小时（最长需要31小时）；但在正方形升温池里，这个过程则需要96个小时。

温室大棚每7天灌溉一次，每次灌溉用水量估计在9.2 m³。长方形升温池的储水量在5.4 m³左右，所以使用长方形升温池一周灌溉两次就可以满足一个大棚的灌溉需要。由于长方形升温池升温时间相对较短，池内水一旦用完可以得到及时补充。由于池顶仅仅高出地面10cm，灌溉系统中得水泵常常因为池中杂物阻塞，影响滴灌或微喷效果。鉴于这种状况，建议在池顶覆盖150目的呢绒网，防止杂物进入升温池。且应该为方便清洗设淤泥坑，并在出水位以上分别设进、出水口。由对土壤温度的全天监测可知，在下午14:00~15:00之间，表层15cm以内的土壤温度可以达到20度以上。在进行滴灌时，可以充分利用这一有利条件，在中午地温及气温较高的时刻对农作物进行灌溉，利用地温及气温达到在一定程度内提高灌溉水温度的目的。

图3．13 长方形升温池与正方形升温池灌溉水升温过程图
3.6 示范工程经验观察

项目大部分示范节水系统都在2012年投入了使用（离石、祁县、隰县和平顺），报告所记录的都是第一手经验。在华北平原面临严重挑战的大背景下，示范工程是有前途的，至少我们可以这样说。

图3.16 由专业技术人员安装的重要性

祁县、隰县、平顺和离石的现代化高效灌溉系统，使我们可以审慎地使用有限的水资源；而同样重要的是这些技术的使用为作物成长创造了一个可控制的微环境，从而提高了作物产量。这些示范工程在提高水生产力上迈出了质的飞跃。带来的效果是双重的：高效节水新系统降低了水的利用，增加了作物的产量。在隰县、平顺和离石这些相对贫穷、水资源却很丰富的地区，灌溉技术的改进推动了当地高经济价值作物种植的发展；相反，如果没有这些技术创新的话，提高作物的种植产量将会很困难。另外，示范技术大大节约了农用化学品的使用和减少了劳动力的投入，而且这样种植出来的农产品恰好符合当前人们对高质量食品的要求，这样的种植方式同样也适应当前中国农业劳动力老龄化的现状。他们的成功还体现在他们新举措不断被其他人效仿方面。投资回收期短、额外利润丰厚，技术创新给这些农户带来的利益自然会很快被他人所知，尤其是园艺种植户，因为这些技术对他们来说同样也适用。要推广这些高效节水技术，必须注意以下四点：

- 进一步推广精准灌溉系统，尤其要注重灌溉系统的精确安装。
在大棚和大田区建设示范工程，尤其在大田区，可以使用低压输水管道和微喷系统，并采取一系列土壤改良措施。

确保售后服务服务到位，农户如果需要维修更换设备，可以买到配件或新设备，另外政府还可以考虑给农户一定的补贴，以提高他们对新技术的需求。

设定微灌系统质量标准，确保设备安装到位，避免因安装不当而影响精准灌溉系统使用效果的现象发生。

图3.17：高效节水经济价值链的重要性
图3.18：花椒嫩芽酱包装设计

更为重要的是示范工程能够创造一个建立在高效节水农业基础上的地方经济。地方经济的发展又推动了高品质作物和特产的种植（比如，平顺花椒芽菜以及隰县黄金梨），但如果移除高效节水系统的话，这些作物和特产的品质和产量是不会像现在这样可以得到保障的。地方价值链的形成是获得成功的一个主要因素，无论是平顺的花椒芽菜加工企业，还是祁县、离石的农民合作社，以及隰县的黄金梨营销公司都是当地经济价值链上不可缺少的一个环节。

示范项目还大大减少了农业灌溉的水消耗，而农业现在仍然是山西省最大的地下水用户。更多措施的实施、一个与水资源总量控制相匹配的全面规划的制定，对恢复地下水供需平衡，挽回走向边缘的资源型经济至关重要。
4. 启示和建议

4.1 启示

地下水对山西省农业和城市发展至关重要。然而，正如在第一章中所述那样，农业过度用水、环境污染以及采矿业对地热的破坏等使得地下水这一战略资源现在正面临危险。

此外，人类活动给含水层带来的一些破坏是不可逆转的：一方面地下水蓄水量会受到严重影响；另一方面，由于受到污染，一些地区的地下水可能在未来几个世纪里都不能使用。而同时随着经济发展，人们对高质量、安全可靠水源供给的需求也日益剧增。气候变化构成另外一个巨大挑战。降雨量的减少意味着地下水补给的减少和灌溉需求的增加。气温上升一方面会使农业活动范围增加，尤其在山西省内较高寒地区；但另一方面也会使蒸发增加。在这些压力下，地下水成为缓减气候变化的重要缓冲力量。

因此，地下水管理应该成为山西省政府工作的一项重要任务。报告在第二章和第三章分别列举了一些高效节水案例，供山西省参考借鉴，这些既包括山西省和中国国内先进经验的介绍，也包括国际创新做法的推广。地下水高效管理和利用也可以成为经济发展的重要支撑。以下报告提出几条政策建议，供山西省参考借鉴。

4.2 政策建议

本报告提出以下几条政策建议：
- 强化地下水资源管理
- 建立用水总量控制制度
- 加快建设节水型社会
- 通过地下水补给涵养、开发非传统水资源等方式来提高水供给
- 加强地下水资源保护
- 继续高效节水技术改革创新

以下将具体讨论这些政策建议。
4.2.1 强化地下水资源管理

地下水资源的可持续利用是关系到经济社会长期发展的战略性问题，实施水资源可持续利用战略，不仅关系到山西省水利建设发展的长远利益，而且关系到全社会、工农业生产及整个国民经济的持续健康发展。为加强水资源管理，需要考虑采取以下重要行动：

首先，在经济结构调整、经济活动规划中，要考虑地下水资源条件，统筹安排国民经济各部门、各行业用水，协调生态环境用水。坚持把维护生态环境安全放在地下水资源开发利用的重要位置。经济社会发展要与当地地下水资源承载能力相协调，在水资源短缺和供需矛盾突出的流域和地区，把投入产出效益作为水资源合理开发利用的评判准则，严格限制高消耗低产出、高耗水重污染的建设项目。适时调整经济建设布局和结构调整。山西省未来城市和工业发展应该考虑向地下水资源丰富的山区延伸。破除行业、部门、地区分割，形成跨行业、跨地区、跨部门的地表水与地下水统一管理的行政体系。同时建立全新的水资源工作机制，它包括三个补偿机制：谁耗费水量谁补偿，谁污染水质谁补偿，谁破坏水生态环境谁补偿。同时利用补偿建立三个恢复机制：保证水量的供需平衡，保证水质达到需水标准，保证水环境与生态达到要求。

其次，建立高效有力的水资源统一管理行政体系，进一步推动水资源的统一管理。目前，各级政府都设有水利部门，为水资源发展设定方向。在水资源管理中，统一规划、统一安排、统一分配、统一管理至关重要。同时，要行使国家对水资源的统一管理权。改革水资源管理体制，建立高效有力的水资源统一管理行政体系，充分体现和行使国家对水资源的统一管理权。改革水资源管理体制，建立高效有力的水资源统一管理行政体系，充分体现和行使国家对水资源的统一管理权，破除行业、部门、地区分割，形成跨行业、跨地区、跨部门的地表水与地下水统一管理的行政体系。进一步明确统一管理与分级管理的关系，流域管理与区域管理的关系，污水处理和灌溉管理等关系。

再次，加强水法规体系建设。将水资源可持续利用纳入国家和地方法规体系。制定水资源可持续利用的法规和道德准则，特别要完善水权分配、水资源配置方案的法规和规章，制定和完善水法规体系。要保证水行政执法公开、公平与规范化。

4.2.2 完善用水总量控制制度

目前山西省在水资源管理方面，建立用水总量控制制度，下一步应积极完善实施，
科学确定各区域地表水可利用量、地下水可开采量及区域外调入水量（引黄水量），在此基础上，分别拟定区域（市、县）地表水、地下水及外调入水量控制指标，建立规划期用水总量控制指标与年度用水总量控制指标相结合的制度；建立鼓励、引导节约用水（第 4.2.3 节）；开发利用非常规水资源（再生水、矿坑水等）的机制，以及引用洪水和河水高峰流量来补给涵养地下水（第 4.2.4 节）。

4.2.3 加快山西省建设节水型社会的步伐

要加强水资源管理，制定节水管理法律法规。这样人们就可以通过法律角度更好地理解节水的重要性，并能够自觉地节水，因为如果浪费水则会受到经济惩罚。

节约用水是中国的基本国策，对保证中国中长期可持续用水至关重要。当前的目标是到 2020 年，建成一个节水型社会。通过以下活动，山西省可以为全国缺水地区树立良好榜样：

首先要大力宣传，使全社会认识到水资源的重要性，明确水资源使国民经济发展的命脉，人人关心水资源，处处保护水资源。

其次，提高产品和工业流程的用水效率。要为不同行业、不同产品（比如洁具）和不同生产流程订立节水规范。如果产品生产技术提高，可以相应降低其的用水标准要求。消费者可以通过法律角度更好地理解节水的重要性，并能够自觉地节水，因为如果他们浪费水的话则会受到经济惩罚。

第三，农业灌溉用水占山西省用水总量的 50%，节水潜力较大，因此首先建立地下水资源管理体系，采用刷卡取水方式记录用水量和水配额使用情况，并精确计费。清徐县综合地下水资源管理体系就是一个经过时间考验成功的案例。现在应该在与地方政府、农户和其他水用户积极商讨基础上，在山西省其他县市推广建立这一综合水资源管理体系。

第四，是在全省推广使用亚行赠款项目 0188 PRC 的高效节水灌溉技术，推广工作最好能够得到当地企业或农民合作社的支持，以保证精准农业最大经济效益的实现。值得注意的是这些新技术的介绍和推广必须精益求精，留有足够时间培训农户。必须严格遵循设备安装规范，严格培训当地设备安装人员。要坚决规避技术推广中的不规范做法，因为如果这样做的话，不但不会达到预期目的，反而会使广大农户失望。
4.2.4 通过地下水补给涵养、开发非传统水资源等方式来提高水供给

山西省水资源总量为123亿立方米，其中地下水资源量占一半。过去，山西省地下水资源被过度开采，造成大部分平原区地下水水位不断下降。为减轻地下水开采压力，应加快水库和引水工程的建设。另外，表水，尤其是洪水和洪峰流量，还没有得到完全控制和利用，系统利用这些水资源发展空间还很大。故此，提出以下建议：

首先，在山区地带，可以采用一些目前在山西省还没有得到广泛推广的技术，来更好地补给和维持地下水。在干河床筑造系列拦水坝可以有效减缓洪水流速，使更多水流入渗补给地下水。在山区流域河床下面筑造地下水库可以很好地阻截地下水流失。应加大对山区地下水资源补给和维持的投资力度，大力推广应用各类地下水资源补给技术措施。如果这些目标都能够得到很好的落实的话，水资源就可以在这些区域得到较好的缓冲，从而有效补给地下水、提高土壤湿度、创造一个良好的微环境。另外，还需要加大对建造各种规模的洪水储存水库的投资，并努力提高工程建设技术。

其次，在平原区，应加大引用洪水入渗地面补给地下含水层的力度。可以通过把雨季洪峰流量引到土壤相对粗糙的灌溉区，让雨水入渗到田地地下。这样做，并不会影响农作物的产量。控制洪水蔓延方法可以在山西省所有平原区域系统推广。

再次，应该大力推动污水的循环利用，尤其是：(1) 城市污水的循环利用。首先要制定污水回收利用方案，然后要投资购置污水处理设备。同时，还应该通过经济刺激政策鼓励企业使用处理水。(2) 大力提高‘灰水’技术。首先应该在人口相对集中的居民小区，建设‘灰水’回用试点，然后再在其他地区进行经验推广。(3) 加快节水技术革新。应该在水循环、冷却水以及水处理等方面采用先进技术。最后，应该提高工业活动、采矿等水回用率。

4.2.5 加强地下水资源保护

加强地下水资源保护、实行污水资源化和防治水源污染，是实现水资源可持续开发利用的根本措施。具体需要以下一些行动：

首先，采用重点污染治理与城市综合治理相结合。在污水排放集中的城区和工矿
区，要有计划的修建污水处理厂，尽量使污水就地“消化”，要严格禁止用渗坑、废井将污水直接排入地下，污染地下水。严格控制直接向河道排放污水废水。

其次，采取分散处理与集中处理相结合，大、中、小型处理厂并举。进一步控制和加强工矿企业污染源的治理，严格控制污水排放量。以改革工艺技术、推行清洁生产、安装污水处理设施，增加污水回用量。

最后，加强对采矿业的管控，保护地下水资源。从2000年到2012年，山西省煤炭开采规模扩大了10倍，山西省煤炭产量现在达到每年10亿吨。在过去几年里，山西安内许多小煤矿都逐一关停，与大型煤矿兼并重组，现在山西省煤炭开采业主要由少数几个大型煤矿集团公司组成。煤炭开采业的兼并重组有利于对煤炭业的统一管理。煤炭开采对地下水是否可长期可持续利用有极大影响，我们迫切需要对这一影响实施管控。以下为三条具体措施：

1）所有新开煤矿必须得到水利部门的审核通过，确保其煤炭开采行为不会破坏地下含水层。

2）所有现存和新开煤矿都必须有强制性环境管理计划，具体描述其在以下方面的补救措施和投入：（1）改良污水水质，防止污染发生；（2）通过安全防衬或其他措施来阻止煤渣污水渗漏。

3）控制较老煤矿的污染破坏，包括关停的煤矿和已采空的煤层。建议采取以下三方面措施：（a）把来自老尾矿的污染将至最低。在一些情况下，煤矿废物可以回收利用；或者通过一系列措施，从老尾矿中回收提取贵重元素；（b）积极控制酸性矿坑水危险的蔓延，一旦对居民和生态环境构成威胁，必须立即采用纠正措施；（c）应该考虑重新利用采空煤层，可以在采空煤层中填充碎石，在一些关键地区，可以用此方法来创建人造含水层。

4.2.6 继续改革创新，把山西省发展成为先进高效节水技术应用基地

近几年来，创新水资源利用技术在一些地区大量出现。在亚行0188 PRC赠款项目中就引入了高效控制灌溉技术，这些技术为发展当地生机勃勃的高效节水经济奠定了坚实的基础。

技术革新应永不止步，只要这样才能不断推动山西经济快速和可持续发展。建议山西省政府与当地研究单位一起建立一个高效节水技术应用示范基地，所示范的包括所有能够减少水消耗，而同时又能保持或提高生产率的技术。
创新的领域相当广阔，但对山西省而言，一个很有希望的重要革新措施是对土壤改良方法的使用，尤其是沸石和生物化肥的应用。沸石是山西省处处可见的矿物质，但目前还没有被系统地用在农业中。然而，成本较低的沸石却可以促进土壤对肥料的有效吸收（降低氮污染的危险），大大提高土壤的保水能力，从而降低灌溉的需求。

第二个极具创新的领域是使用生物肥料，生物肥料的使用可以长期改善土壤结构，提高土壤保水能力。生物肥料充分利用酵为催化剂，在粪便、岩尘矿物和糖（或者其他有机废物）之间发生的消化过程。与传统化肥相比，生物肥料可以透过为土壤补充有机物质和矿物成分等来提高土壤的品质。生物肥料因此具有修复土壤质量和提高土壤保水能力之功效。

第三个极具创新的领域是污水处理方法，尤其是矿坑水。污水处理既可以采用积极水处理方法，包括使用生物反应单元；也可以采用建造人工湿地的被动水处理方法；以及对矿山酸性废物的控制性储存和排放等。
参考文献

[7]. 杨荣慧，王延平，张海，等. 山地节水滴灌设备研制及其应用效益研究[J]. 干旱地区农业研究，2003，21（4）：84－87.

[55]. 薛风利，吴桂梅，李砚阁. 太原市地下水合理利用与调控. 河南：黄河水利出版社，2000

[56]. 夏军，黄国和，庞进武. 可持续水资源管理：理论方法应用. 北京：化学工业出版社，2005

[57]. 夏军，庞进武，左其亭. 城市水资源承载能力——理论，方法，应用. 北京：化学工业出版社，2005

[58]. 姜文来，唐曲，雷波. 水资源管理学导论. 北京：化学工业出版社，2004

[59]. 牛仁亮 李振旋等. 山西省煤炭开采对水资源破坏影响及评价. 北京：中国科技出版社，2003

[60]. 山西省水资源管理委员会办公室. 山西省地下水可持续开发和利用. 1998

[61]. 山西省发改委 山西省水利厅. 山西省水战略研究. 2010

[62]. 山西省水资源管理委员会办公室. 山西省地下水开采控制规划. 2007

[73]. Fan X, Wang M. Change trends of air temperature and precipitation over Shanxi Province, China.
Theoretical and Applied Climatology, 2011, 103(3): 519-531.

[79]. Li He. Case study on typical irrigation districts. Submitted as part of the FAO “Study on Analysis of Sustainable Water Resource Use” project, funded by the Government of Japan, 2011.

[90]. Zekster I S, Everett L G. Groundwater resources of the world and their use, IHP-VI, Series on

[91]. 山西省水利厅. 山西省水资源公报, 2005~2010

项目执行期间的成果

[1]. 张建婷，樊贵盛，马丹妮．低温区温室大棚滴灌系统设计的若干问题[J]．中国农村水利水电，2012，(8)：34-37．（核心期刊，已刊登）

[2]. 胡婧娟，樊贵盛．越冬期日光温室空气温度变化特性的试验研究[J]．待刊．

[3]. 胡婧娟，樊贵盛．越冬期日光温室土质墙体温度变化特性的试验研究．太原理工大学学报，待刊．